From 352ae7e65b6a74bcd768aa88b866a44c713284c8 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Wed, 26 Oct 2016 15:35:44 +0000
Subject: [PATCH] ADAM

---
 src/classifier.c |  263 ++++++++++++++++++++++++++++++++++++----------------
 1 files changed, 182 insertions(+), 81 deletions(-)

diff --git a/src/classifier.c b/src/classifier.c
index 3424216..a77f9df 100644
--- a/src/classifier.c
+++ b/src/classifier.c
@@ -10,6 +10,7 @@
 
 #ifdef OPENCV
 #include "opencv2/highgui/highgui_c.h"
+image get_image_from_stream(CvCapture *cap);
 #endif
 
 list *read_data_cfg(char *filename)
@@ -40,6 +41,22 @@
     return options;
 }
 
+void hierarchy_predictions(float *predictions, int n, tree *hier, int only_leaves)
+{
+    int j;
+    for(j = 0; j < n; ++j){
+        int parent = hier->parent[j];
+        if(parent >= 0){
+            predictions[j] *= predictions[parent]; 
+        }
+    }
+    if(only_leaves){
+        for(j = 0; j < n; ++j){
+            if(!hier->leaf[j]) predictions[j] = 0;
+        }
+    }
+}
+
 float *get_regression_values(char **labels, int n)
 {
     float *v = calloc(n, sizeof(float));
@@ -55,30 +72,32 @@
 void train_classifier_multi(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear)
 {
 #ifdef GPU
-    int nthreads = 8;
     int i;
 
-    data_seed = time(0);
-    srand(time(0));
     float avg_loss = -1;
     char *base = basecfg(cfgfile);
     printf("%s\n", base);
     printf("%d\n", ngpus);
     network *nets = calloc(ngpus, sizeof(network));
+
+    srand(time(0));
+    int seed = rand();
     for(i = 0; i < ngpus; ++i){
+        srand(seed);
         cuda_set_device(gpus[i]);
         nets[i] = parse_network_cfg(cfgfile);
         if(weightfile){
-            load_weights(&(nets[i]), weightfile);
+            load_weights(&nets[i], weightfile);
         }
         if(clear) *nets[i].seen = 0;
+        nets[i].learning_rate *= ngpus;
     }
+    srand(time(0));
     network net = nets[0];
 
-    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
-    int imgs = net.batch*ngpus/nthreads;
-    assert(net.batch*ngpus % nthreads == 0);
+    int imgs = net.batch * net.subdivisions * ngpus;
 
+    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
     list *options = read_data_cfg(datacfg);
 
     char *backup_directory = option_find_str(options, "backup", "/backup/");
@@ -93,13 +112,11 @@
     int N = plist->size;
     clock_t time;
 
-    pthread_t *load_threads = calloc(nthreads, sizeof(pthread_t));
-    data *trains  = calloc(nthreads, sizeof(data));
-    data *buffers = calloc(nthreads, sizeof(data));
-
     load_args args = {0};
     args.w = net.w;
     args.h = net.h;
+    args.threads = 32;
+    args.hierarchy = net.hierarchy;
 
     args.min = net.min_crop;
     args.max = net.max_crop;
@@ -117,36 +134,28 @@
     args.labels = labels;
     args.type = CLASSIFICATION_DATA;
 
-    for(i = 0; i < nthreads; ++i){
-        args.d = buffers + i;
-        load_threads[i] = load_data_in_thread(args);
-    }
+    data train;
+    data buffer;
+    pthread_t load_thread;
+    args.d = &buffer;
+    load_thread = load_data(args);
 
     int epoch = (*net.seen)/N;
     while(get_current_batch(net) < net.max_batches || net.max_batches == 0){
         time=clock();
-        for(i = 0; i < nthreads; ++i){
-            pthread_join(load_threads[i], 0);
-            trains[i] = buffers[i];
-        }
-        data train = concat_datas(trains, nthreads);
 
-        for(i = 0; i < nthreads; ++i){
-            args.d = buffers + i;
-            load_threads[i] = load_data_in_thread(args);
-        }
+        pthread_join(load_thread, 0);
+        train = buffer;
+        load_thread = load_data(args);
 
         printf("Loaded: %lf seconds\n", sec(clock()-time));
         time=clock();
 
-        float loss = train_networks(nets, ngpus, train);
+        float loss = train_networks(nets, ngpus, train, 4);
         if(avg_loss == -1) avg_loss = loss;
         avg_loss = avg_loss*.9 + loss*.1;
         printf("%d, %.3f: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen);
         free_data(train);
-        for(i = 0; i < nthreads; ++i){
-            free_data(trains[i]);
-        }
         if(*net.seen/N > epoch){
             epoch = *net.seen/N;
             char buff[256];
@@ -163,14 +172,6 @@
     sprintf(buff, "%s/%s.weights", backup_directory, base);
     save_weights(net, buff);
 
-    for(i = 0; i < nthreads; ++i){
-        pthread_join(load_threads[i], 0);
-        free_data(buffers[i]);
-    }
-    free(buffers);
-    free(trains);
-    free(load_threads);
-
     free_network(net);
     free_ptrs((void**)labels, classes);
     free_ptrs((void**)paths, plist->size);
@@ -182,10 +183,6 @@
 
 void train_classifier(char *datacfg, char *cfgfile, char *weightfile, int clear)
 {
-    int nthreads = 8;
-    int i;
-
-    data_seed = time(0);
     srand(time(0));
     float avg_loss = -1;
     char *base = basecfg(cfgfile);
@@ -195,10 +192,10 @@
         load_weights(&net, weightfile);
     }
     if(clear) *net.seen = 0;
-    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
-    int imgs = net.batch*net.subdivisions/nthreads;
-    assert(net.batch*net.subdivisions % nthreads == 0);
 
+    int imgs = net.batch * net.subdivisions;
+
+    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
     list *options = read_data_cfg(datacfg);
 
     char *backup_directory = option_find_str(options, "backup", "/backup/");
@@ -213,13 +210,10 @@
     int N = plist->size;
     clock_t time;
 
-    pthread_t *load_threads = calloc(nthreads, sizeof(pthread_t));
-    data *trains  = calloc(nthreads, sizeof(data));
-    data *buffers = calloc(nthreads, sizeof(data));
-
     load_args args = {0};
     args.w = net.w;
     args.h = net.h;
+    args.threads = 8;
 
     args.min = net.min_crop;
     args.max = net.max_crop;
@@ -229,6 +223,7 @@
     args.saturation = net.saturation;
     args.hue = net.hue;
     args.size = net.w;
+    args.hierarchy = net.hierarchy;
 
     args.paths = paths;
     args.classes = classes;
@@ -237,24 +232,19 @@
     args.labels = labels;
     args.type = CLASSIFICATION_DATA;
 
-    for(i = 0; i < nthreads; ++i){
-        args.d = buffers + i;
-        load_threads[i] = load_data_in_thread(args);
-    }
+    data train;
+    data buffer;
+    pthread_t load_thread;
+    args.d = &buffer;
+    load_thread = load_data(args);
 
     int epoch = (*net.seen)/N;
     while(get_current_batch(net) < net.max_batches || net.max_batches == 0){
         time=clock();
-        for(i = 0; i < nthreads; ++i){
-            pthread_join(load_threads[i], 0);
-            trains[i] = buffers[i];
-        }
-        data train = concat_datas(trains, nthreads);
 
-        for(i = 0; i < nthreads; ++i){
-            args.d = buffers + i;
-            load_threads[i] = load_data_in_thread(args);
-        }
+        pthread_join(load_thread, 0);
+        train = buffer;
+        load_thread = load_data(args);
 
         printf("Loaded: %lf seconds\n", sec(clock()-time));
         time=clock();
@@ -271,13 +261,11 @@
 #endif
 
         float loss = train_network(net, train);
+        free_data(train);
+
         if(avg_loss == -1) avg_loss = loss;
         avg_loss = avg_loss*.9 + loss*.1;
         printf("%d, %.3f: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen);
-        free_data(train);
-        for(i = 0; i < nthreads; ++i){
-            free_data(trains[i]);
-        }
         if(*net.seen/N > epoch){
             epoch = *net.seen/N;
             char buff[256];
@@ -294,14 +282,6 @@
     sprintf(buff, "%s/%s.weights", backup_directory, base);
     save_weights(net, buff);
 
-    for(i = 0; i < nthreads; ++i){
-        pthread_join(load_threads[i], 0);
-        free_data(buffers[i]);
-    }
-    free(buffers);
-    free(trains);
-    free(load_threads);
-
     free_network(net);
     free_ptrs((void**)labels, classes);
     free_ptrs((void**)paths, plist->size);
@@ -432,6 +412,7 @@
         float *pred = calloc(classes, sizeof(float));
         for(j = 0; j < 10; ++j){
             float *p = network_predict(net, images[j].data);
+            if(net.hierarchy) hierarchy_predictions(p, net.outputs, net.hierarchy, 1);
             axpy_cpu(classes, 1, p, 1, pred, 1);
             free_image(images[j]);
         }
@@ -492,6 +473,7 @@
         //show_image(crop, "cropped");
         //cvWaitKey(0);
         float *pred = network_predict(net, resized.data);
+        if(net.hierarchy) hierarchy_predictions(pred, net.outputs, net.hierarchy, 1);
 
         free_image(im);
         free_image(resized);
@@ -506,6 +488,26 @@
     }
 }
 
+void change_leaves(tree *t, char *leaf_list)
+{
+    list *llist = get_paths(leaf_list);
+    char **leaves = (char **)list_to_array(llist);
+    int n = llist->size;
+    int i,j;
+    int found = 0;
+    for(i = 0; i < t->n; ++i){
+        t->leaf[i] = 0;
+        for(j = 0; j < n; ++j){
+            if (0==strcmp(t->name[i], leaves[j])){
+                t->leaf[i] = 1;
+                ++found;
+                break;
+            }
+        }
+    }
+    fprintf(stderr, "Found %d leaves.\n", found);
+}
+
 
 void validate_classifier_single(char *datacfg, char *filename, char *weightfile)
 {
@@ -520,6 +522,8 @@
     list *options = read_data_cfg(datacfg);
 
     char *label_list = option_find_str(options, "labels", "data/labels.list");
+    char *leaf_list = option_find_str(options, "leaves", 0);
+    if(leaf_list) change_leaves(net.hierarchy, leaf_list);
     char *valid_list = option_find_str(options, "valid", "data/train.list");
     int classes = option_find_int(options, "classes", 2);
     int topk = option_find_int(options, "top", 1);
@@ -551,6 +555,7 @@
         //show_image(crop, "cropped");
         //cvWaitKey(0);
         float *pred = network_predict(net, crop.data);
+        if(net.hierarchy) hierarchy_predictions(pred, net.outputs, net.hierarchy, 1);
 
         if(resized.data != im.data) free_image(resized);
         free_image(im);
@@ -611,6 +616,7 @@
             image r = resize_min(im, scales[j]);
             resize_network(&net, r.w, r.h);
             float *p = network_predict(net, r.data);
+            if(net.hierarchy) hierarchy_predictions(p, net.outputs, net.hierarchy, 1);
             axpy_cpu(classes, 1, p, 1, pred, 1);
             flip_image(r);
             p = network_predict(net, r.data);
@@ -710,8 +716,7 @@
     }
 }
 
-
-void predict_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filename)
+void predict_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filename, int top)
 {
     network net = parse_network_cfg(cfgfile);
     if(weightfile){
@@ -724,7 +729,7 @@
 
     char *name_list = option_find_str(options, "names", 0);
     if(!name_list) name_list = option_find_str(options, "labels", "data/labels.list");
-    int top = option_find_int(options, "top", 1);
+    if(top == 0) top = option_find_int(options, "top", 1);
 
     int i = 0;
     char **names = get_labels(name_list);
@@ -751,11 +756,13 @@
         float *X = r.data;
         time=clock();
         float *predictions = network_predict(net, X);
-        top_predictions(net, top, indexes);
+        if(net.hierarchy) hierarchy_predictions(predictions, net.outputs, net.hierarchy, 0);
+        top_k(predictions, net.outputs, top, indexes);
         printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
         for(i = 0; i < top; ++i){
             int index = indexes[i];
-            printf("%s: %f\n", names[index], predictions[index]);
+            if(net.hierarchy) printf("%d, %s: %f, parent: %s \n",index, names[index], predictions[index], (net.hierarchy->parent[index] >= 0) ? names[net.hierarchy->parent[index]] : "Root");
+            else printf("%s: %f\n",names[index], predictions[index]);
         }
         if(r.data != im.data) free_image(r);
         free_image(im);
@@ -934,7 +941,19 @@
         int w = x2 - x1 - 2*border;
 
         float *predictions = network_predict(net, in_s.data);
-        float curr_threat = predictions[0] * 0 + predictions[1] * .6 + predictions[2];
+        float curr_threat = 0;
+        if(1){
+            curr_threat = predictions[0] * 0 + 
+                predictions[1] * .6 + 
+                predictions[2];
+        } else {
+            curr_threat = predictions[218] +
+                predictions[539] + 
+                predictions[540] + 
+                predictions[368] + 
+                predictions[369] + 
+                predictions[370];
+        }
         threat = roll * curr_threat + (1-roll) * threat;
 
         draw_box_width(out, x2 + border, y1 + .02*h, x2 + .5 * w, y1 + .02*h + border, border, 0,0,0);
@@ -970,7 +989,7 @@
         top_predictions(net, top, indexes);
         char buff[256];
         sprintf(buff, "/home/pjreddie/tmp/threat_%06d", count);
-        save_image(out, buff);
+        //save_image(out, buff);
 
         printf("\033[2J");
         printf("\033[1;1H");
@@ -981,7 +1000,7 @@
             printf("%.1f%%: %s\n", predictions[index]*100, names[index]);
         }
 
-        if(0){
+        if(1){
             show_image(out, "Threat");
             cvWaitKey(10);
         }
@@ -997,6 +1016,85 @@
 }
 
 
+void gun_classifier(char *datacfg, char *cfgfile, char *weightfile, int cam_index, const char *filename)
+{
+#ifdef OPENCV
+    int bad_cats[] = {218, 539, 540, 1213, 1501, 1742, 1911, 2415, 4348, 19223, 368, 369, 370, 1133, 1200, 1306, 2122, 2301, 2537, 2823, 3179, 3596, 3639, 4489, 5107, 5140, 5289, 6240, 6631, 6762, 7048, 7171, 7969, 7984, 7989, 8824, 8927, 9915, 10270, 10448, 13401, 15205, 18358, 18894, 18895, 19249, 19697};
+
+    printf("Classifier Demo\n");
+    network net = parse_network_cfg(cfgfile);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    set_batch_network(&net, 1);
+    list *options = read_data_cfg(datacfg);
+
+    srand(2222222);
+    CvCapture * cap;
+
+    if(filename){
+        cap = cvCaptureFromFile(filename);
+    }else{
+        cap = cvCaptureFromCAM(cam_index);
+    }
+
+    int top = option_find_int(options, "top", 1);
+
+    char *name_list = option_find_str(options, "names", 0);
+    char **names = get_labels(name_list);
+
+    int *indexes = calloc(top, sizeof(int));
+
+    if(!cap) error("Couldn't connect to webcam.\n");
+    cvNamedWindow("Threat Detection", CV_WINDOW_NORMAL); 
+    cvResizeWindow("Threat Detection", 512, 512);
+    float fps = 0;
+    int i;
+
+    while(1){
+        struct timeval tval_before, tval_after, tval_result;
+        gettimeofday(&tval_before, NULL);
+
+        image in = get_image_from_stream(cap);
+        image in_s = resize_image(in, net.w, net.h);
+        show_image(in, "Threat Detection");
+
+        float *predictions = network_predict(net, in_s.data);
+        top_predictions(net, top, indexes);
+
+        printf("\033[2J");
+        printf("\033[1;1H");
+
+        int threat = 0;
+        for(i = 0; i < sizeof(bad_cats)/sizeof(bad_cats[0]); ++i){
+            int index = bad_cats[i];
+            if(predictions[index] > .01){
+                printf("Threat Detected!\n");
+                threat = 1;
+                break;
+            }
+        }
+        if(!threat) printf("Scanning...\n");
+        for(i = 0; i < sizeof(bad_cats)/sizeof(bad_cats[0]); ++i){
+            int index = bad_cats[i];
+            if(predictions[index] > .01){
+                printf("%s\n", names[index]);
+            }
+        }
+
+        free_image(in_s);
+        free_image(in);
+
+        cvWaitKey(10);
+
+        gettimeofday(&tval_after, NULL);
+        timersub(&tval_after, &tval_before, &tval_result);
+        float curr = 1000000.f/((long int)tval_result.tv_usec);
+        fps = .9*fps + .1*curr;
+    }
+#endif
+}
+
 void demo_classifier(char *datacfg, char *cfgfile, char *weightfile, int cam_index, const char *filename)
 {
 #ifdef OPENCV
@@ -1039,6 +1137,7 @@
         show_image(in, "Classifier");
 
         float *predictions = network_predict(net, in_s.data);
+        if(net.hierarchy) hierarchy_predictions(predictions, net.outputs, net.hierarchy, 1);
         top_predictions(net, top, indexes);
 
         printf("\033[2J");
@@ -1090,6 +1189,7 @@
     }
 
     int cam_index = find_int_arg(argc, argv, "-c", 0);
+    int top = find_int_arg(argc, argv, "-t", 0);
     int clear = find_arg(argc, argv, "-clear");
     char *data = argv[3];
     char *cfg = argv[4];
@@ -1097,11 +1197,12 @@
     char *filename = (argc > 6) ? argv[6]: 0;
     char *layer_s = (argc > 7) ? argv[7]: 0;
     int layer = layer_s ? atoi(layer_s) : -1;
-    if(0==strcmp(argv[2], "predict")) predict_classifier(data, cfg, weights, filename);
+    if(0==strcmp(argv[2], "predict")) predict_classifier(data, cfg, weights, filename, top);
     else if(0==strcmp(argv[2], "try")) try_classifier(data, cfg, weights, filename, atoi(layer_s));
     else if(0==strcmp(argv[2], "train")) train_classifier(data, cfg, weights, clear);
     else if(0==strcmp(argv[2], "trainm")) train_classifier_multi(data, cfg, weights, gpus, ngpus, clear);
     else if(0==strcmp(argv[2], "demo")) demo_classifier(data, cfg, weights, cam_index, filename);
+    else if(0==strcmp(argv[2], "gun")) gun_classifier(data, cfg, weights, cam_index, filename);
     else if(0==strcmp(argv[2], "threat")) threat_classifier(data, cfg, weights, cam_index, filename);
     else if(0==strcmp(argv[2], "test")) test_classifier(data, cfg, weights, layer);
     else if(0==strcmp(argv[2], "label")) label_classifier(data, cfg, weights);

--
Gitblit v1.10.0