From 3df335bb50f890b12fa1a9965e91b0cf46d7902c Mon Sep 17 00:00:00 2001
From: AlexeyAB <alexeyab84@gmail.com>
Date: Mon, 23 Apr 2018 20:15:21 +0000
Subject: [PATCH] Fixed SSE4.1 dependencies when AVX=1 on Linux

---
 src/network.c |  241 ++++++++++++++++++++++++++++++++++++++++++++++--
 1 files changed, 231 insertions(+), 10 deletions(-)

diff --git a/src/network.c b/src/network.c
index 0a49bf1..ce6d28a 100644
--- a/src/network.c
+++ b/src/network.c
@@ -27,6 +27,20 @@
 #include "dropout_layer.h"
 #include "route_layer.h"
 #include "shortcut_layer.h"
+#include "yolo_layer.h"
+#include "parser.h"
+
+network *load_network(char *cfg, char *weights, int clear)
+{
+	printf(" Try to load cfg: %s, weights: %s, clear = %d \n", cfg, weights, clear);
+	network *net = calloc(1, sizeof(network));
+	*net = parse_network_cfg(cfg);
+	if (weights && weights[0] != 0) {
+		load_weights(net, weights);
+	}
+	if (clear) (*net->seen) = 0;
+	return net;
+}
 
 int get_current_batch(network net)
 {
@@ -45,11 +59,33 @@
     #endif
 }
 
+void reset_network_state(network *net, int b)
+{
+	int i;
+	for (i = 0; i < net->n; ++i) {
+#ifdef GPU
+		layer l = net->layers[i];
+		if (l.state_gpu) {
+			fill_ongpu(l.outputs, 0, l.state_gpu + l.outputs*b, 1);
+		}
+		if (l.h_gpu) {
+			fill_ongpu(l.outputs, 0, l.h_gpu + l.outputs*b, 1);
+		}
+#endif
+	}
+}
+
+void reset_rnn(network *net)
+{
+	reset_network_state(net, 0);
+}
+
 float get_current_rate(network net)
 {
     int batch_num = get_current_batch(net);
     int i;
     float rate;
+	if (batch_num < net.burn_in) return net.learning_rate * pow((float)batch_num / net.burn_in, net.power);
     switch (net.policy) {
         case CONSTANT:
             return net.learning_rate;
@@ -66,8 +102,9 @@
         case EXP:
             return net.learning_rate * pow(net.gamma, batch_num);
         case POLY:
-            if (batch_num < net.burn_in) return net.learning_rate * pow((float)batch_num / net.burn_in, net.power);
-            return net.learning_rate * pow(1 - (float)batch_num / net.max_batches, net.power);
+			return net.learning_rate * pow(1 - (float)batch_num / net.max_batches, net.power);
+            //if (batch_num < net.burn_in) return net.learning_rate * pow((float)batch_num / net.burn_in, net.power);
+            //return net.learning_rate * pow(1 - (float)batch_num / net.max_batches, net.power);
         case RANDOM:
             return net.learning_rate * pow(rand_uniform(0,1), net.power);
         case SIG:
@@ -138,6 +175,11 @@
     #ifdef GPU
     net.input_gpu = calloc(1, sizeof(float *));
     net.truth_gpu = calloc(1, sizeof(float *));
+
+	net.input16_gpu = calloc(1, sizeof(float *));
+	net.output16_gpu = calloc(1, sizeof(float *));
+	net.max_input16_size = calloc(1, sizeof(size_t));
+	net.max_output16_size = calloc(1, sizeof(size_t));
     #endif
     return net;
 }
@@ -218,6 +260,7 @@
             state.delta = prev.delta;
         }
         layer l = net.layers[i];
+        if (l.stopbackward) break;
         l.backward(l, state);
     }
 }
@@ -313,7 +356,20 @@
         net->layers[i].batch = b;
 #ifdef CUDNN
         if(net->layers[i].type == CONVOLUTIONAL){
-            cudnn_convolutional_setup(net->layers + i);
+			cudnn_convolutional_setup(net->layers + i, cudnn_fastest);
+			/*
+			layer *l = net->layers + i;
+            cudnn_convolutional_setup(l, cudnn_fastest);
+			// check for excessive memory consumption 
+			size_t free_byte;
+			size_t total_byte;
+			check_error(cudaMemGetInfo(&free_byte, &total_byte));
+			if (l->workspace_size > free_byte || l->workspace_size >= total_byte / 2) {
+				printf(" used slow CUDNN algo without Workspace! \n");
+				cudnn_convolutional_setup(l, cudnn_smallest);
+				l->workspace_size = get_workspace_size(*l);
+			}
+			*/
         }
 #endif
     }
@@ -325,6 +381,12 @@
     cuda_set_device(net->gpu_index);
     if(gpu_index >= 0){
         cuda_free(net->workspace);
+		if (net->input_gpu) {
+			cuda_free(*net->input_gpu);
+			*net->input_gpu = 0;
+			cuda_free(*net->truth_gpu);
+			*net->truth_gpu = 0;
+		}
     }
 #endif
     int i;
@@ -337,6 +399,7 @@
     //fflush(stderr);
     for (i = 0; i < net->n; ++i){
         layer l = net->layers[i];
+		//printf(" %d: layer = %d,", i, l.type);
         if(l.type == CONVOLUTIONAL){
             resize_convolutional_layer(&l, w, h);
         }else if(l.type == CROP){
@@ -345,8 +408,14 @@
             resize_maxpool_layer(&l, w, h);
         }else if(l.type == REGION){
             resize_region_layer(&l, w, h);
+		}else if (l.type == YOLO) {
+			resize_yolo_layer(&l, w, h);
         }else if(l.type == ROUTE){
             resize_route_layer(&l, net);
+		}else if (l.type == SHORTCUT) {
+			resize_shortcut_layer(&l, w, h);
+		}else if (l.type == UPSAMPLE) {
+			resize_upsample_layer(&l, w, h);
         }else if(l.type == REORG){
             resize_reorg_layer(&l, w, h);
         }else if(l.type == AVGPOOL){
@@ -356,6 +425,7 @@
         }else if(l.type == COST){
             resize_cost_layer(&l, inputs);
         }else{
+			fprintf(stderr, "Resizing type %d \n", (int)l.type);
             error("Cannot resize this type of layer");
         }
         if(l.workspace_size > workspace_size) workspace_size = l.workspace_size;
@@ -367,13 +437,9 @@
     }
 #ifdef GPU
     if(gpu_index >= 0){
-        if(net->input_gpu) {
-            cuda_free(*net->input_gpu);
-            *net->input_gpu = 0;
-            cuda_free(*net->truth_gpu);
-            *net->truth_gpu = 0;
-        }
+		printf(" try to allocate workspace = %zu * sizeof(float), ", (workspace_size - 1) / sizeof(float) + 1);
         net->workspace = cuda_make_array(0, (workspace_size-1)/sizeof(float)+1);
+		printf(" CUDA allocate done! \n");
     }else {
         free(net->workspace);
         net->workspace = calloc(1, workspace_size);
@@ -472,6 +538,112 @@
     return out;
 }
 
+int num_detections(network *net, float thresh)
+{
+	int i;
+	int s = 0;
+	for (i = 0; i < net->n; ++i) {
+		layer l = net->layers[i];
+		if (l.type == YOLO) {
+			s += yolo_num_detections(l, thresh);
+		}
+		if (l.type == DETECTION || l.type == REGION) {
+			s += l.w*l.h*l.n;
+		}
+	}
+	return s;
+}
+
+detection *make_network_boxes(network *net, float thresh, int *num)
+{
+	layer l = net->layers[net->n - 1];
+	int i;
+	int nboxes = num_detections(net, thresh);
+	if (num) *num = nboxes;
+	detection *dets = calloc(nboxes, sizeof(detection));
+	for (i = 0; i < nboxes; ++i) {
+		dets[i].prob = calloc(l.classes, sizeof(float));
+		if (l.coords > 4) {
+			dets[i].mask = calloc(l.coords - 4, sizeof(float));
+		}
+	}
+	return dets;
+}
+
+
+void custom_get_region_detections(layer l, int w, int h, int net_w, int net_h, float thresh, int *map, float hier, int relative, detection *dets, int letter)
+{
+	box *boxes = calloc(l.w*l.h*l.n, sizeof(box));
+	float **probs = calloc(l.w*l.h*l.n, sizeof(float *));
+	int i, j;
+	for (j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(l.classes, sizeof(float *));
+	get_region_boxes(l, 1, 1, thresh, probs, boxes, 0, map);
+	for (j = 0; j < l.w*l.h*l.n; ++j) {
+		dets[j].classes = l.classes;
+		dets[j].bbox = boxes[j];
+		dets[j].objectness = 1;
+		for (i = 0; i < l.classes; ++i) {
+			dets[j].prob[i] = probs[j][i];
+		}
+	}
+
+	free(boxes);
+	free_ptrs((void **)probs, l.w*l.h*l.n);
+
+	//correct_region_boxes(dets, l.w*l.h*l.n, w, h, net_w, net_h, relative);
+	correct_yolo_boxes(dets, l.w*l.h*l.n, w, h, net_w, net_h, relative, letter);
+}
+
+void fill_network_boxes(network *net, int w, int h, float thresh, float hier, int *map, int relative, detection *dets, int letter)
+{
+	int j;
+	for (j = 0; j < net->n; ++j) {
+		layer l = net->layers[j];
+		if (l.type == YOLO) {
+			int count = get_yolo_detections(l, w, h, net->w, net->h, thresh, map, relative, dets, letter);
+			dets += count;
+		}
+		if (l.type == REGION) {
+			custom_get_region_detections(l, w, h, net->w, net->h, thresh, map, hier, relative, dets, letter);
+			//get_region_detections(l, w, h, net->w, net->h, thresh, map, hier, relative, dets);
+			dets += l.w*l.h*l.n;
+		}
+		if (l.type == DETECTION) {
+			get_detection_detections(l, w, h, thresh, dets);
+			dets += l.w*l.h*l.n;
+		}
+	}
+}
+
+detection *get_network_boxes(network *net, int w, int h, float thresh, float hier, int *map, int relative, int *num, int letter)
+{
+	detection *dets = make_network_boxes(net, thresh, num);
+	fill_network_boxes(net, w, h, thresh, hier, map, relative, dets, letter);
+	return dets;
+}
+
+void free_detections(detection *dets, int n)
+{
+	int i;
+	for (i = 0; i < n; ++i) {
+		free(dets[i].prob);
+		if (dets[i].mask) free(dets[i].mask);
+	}
+	free(dets);
+}
+
+float *network_predict_image(network *net, image im)
+{
+	image imr = letterbox_image(im, net->w, net->h);
+	set_batch_network(net, 1);
+	float *p = network_predict(*net, imr.data);
+	free_image(imr);
+	return p;
+}
+
+int network_width(network *net) { return net->w; }
+int network_height(network *net) { return net->h; }
+
 matrix network_predict_data_multi(network net, data test, int n)
 {
     int i,j,b,m;
@@ -595,11 +767,60 @@
 		free_layer(net.layers[i]);
 	}
 	free(net.layers);
-	free(net.workspace);
 #ifdef GPU
+	if (gpu_index >= 0) cuda_free(net.workspace);
+	else free(net.workspace);
 	if (*net.input_gpu) cuda_free(*net.input_gpu);
 	if (*net.truth_gpu) cuda_free(*net.truth_gpu);
 	if (net.input_gpu) free(net.input_gpu);
 	if (net.truth_gpu) free(net.truth_gpu);
+
+	if (*net.input16_gpu) cuda_free(*net.input16_gpu);
+	if (*net.output16_gpu) cuda_free(*net.output16_gpu);
+	if (net.input16_gpu) free(net.input16_gpu);
+	if (net.output16_gpu) free(net.output16_gpu);
+	if (net.max_input16_size) free(net.max_input16_size);
+	if (net.max_output16_size) free(net.max_output16_size);
+#else
+	free(net.workspace);
 #endif
 }
+
+
+void fuse_conv_batchnorm(network net)
+{
+	int j;
+	for (j = 0; j < net.n; ++j) {
+		layer *l = &net.layers[j];
+
+		if (l->type == CONVOLUTIONAL) {
+			//printf(" Merges Convolutional-%d and batch_norm \n", j);
+
+			if (l->batch_normalize) {
+				int f;
+				for (f = 0; f < l->n; ++f)
+				{
+					l->biases[f] = l->biases[f] - (double)l->scales[f] * l->rolling_mean[f] / (sqrt((double)l->rolling_variance[f]) + .000001f);
+
+					const size_t filter_size = l->size*l->size*l->c;
+					int i;
+					for (i = 0; i < filter_size; ++i) {
+						int w_index = f*filter_size + i;
+
+						l->weights[w_index] = (double)l->weights[w_index] * l->scales[f] / (sqrt((double)l->rolling_variance[f]) + .000001f);
+					}
+				}
+
+				l->batch_normalize = 0;
+#ifdef GPU
+				if (gpu_index >= 0) {
+					push_convolutional_layer(*l);
+				}
+#endif
+			}
+		}
+		else {
+			//printf(" Fusion skip layer type: %d \n", l->type);
+		}
+	}
+}

--
Gitblit v1.10.0