From 408bde78ffd5c9512ee09adcd2faba21c875d676 Mon Sep 17 00:00:00 2001 From: AlexeyAB <alexeyab84@gmail.com> Date: Fri, 13 Apr 2018 14:32:10 +0000 Subject: [PATCH] Fixed darknet.py for Linux --- README.md | 6 ++++-- 1 files changed, 4 insertions(+), 2 deletions(-) diff --git a/README.md b/README.md index 55c36a5..fa2809b 100644 --- a/README.md +++ b/README.md @@ -46,7 +46,7 @@ * **OpenCV 3.4.0**: https://sourceforge.net/projects/opencvlibrary/files/opencv-win/3.4.0/opencv-3.4.0-vc14_vc15.exe/download * **or OpenCV 2.4.13**: https://sourceforge.net/projects/opencvlibrary/files/opencv-win/2.4.13/opencv-2.4.13.2-vc14.exe/download - OpenCV allows to show image or video detection in the window and store result to file that specified in command line `-out_filename res.avi` -* **GPU with CC >= 2.0** if you use CUDA, or **GPU CC >= 3.0** if you use cuDNN + CUDA: https://en.wikipedia.org/wiki/CUDA#GPUs_supported +* **GPU with CC >= 3.0**: https://en.wikipedia.org/wiki/CUDA#GPUs_supported ##### Pre-trained models for different cfg-files can be downloaded from (smaller -> faster & lower quality): * `yolov3.cfg` (236 MB COCO **Yolo v3**) - require 4 GB GPU-RAM: https://pjreddie.com/media/files/yolov3.weights @@ -167,7 +167,7 @@ `C:\opencv_3.0\opencv\build\include;..\..\3rdparty\include;%(AdditionalIncludeDirectories);$(CudaToolkitIncludeDir);$(cudnn)\include` - (right click on project) -> Build dependecies -> Build Customizations -> set check on CUDA 9.1 or what version you have - for example as here: http://devblogs.nvidia.com/parallelforall/wp-content/uploads/2015/01/VS2013-R-5.jpg -- add to project all .c & .cu files from `\src` +- add to project all `.c` & `.cu` files and file `http_stream.cpp` from `\src` - (right click on project) -> properties -> Linker -> General -> Additional Library Directories, put here: `C:\opencv_3.0\opencv\build\x64\vc14\lib;$(CUDA_PATH)lib\$(PlatformName);$(cudnn)\lib\x64;%(AdditionalLibraryDirectories)` @@ -216,6 +216,8 @@ More information about training by the link: http://pjreddie.com/darknet/yolo/#train-voc + **Note:** If during training you see `nan` values in some lines then training goes well, but if `nan` are in all lines then training goes wrong. + ## How to train with multi-GPU: 1. Train it first on 1 GPU for like 1000 iterations: `darknet.exe detector train data/voc.data cfg/yolov3-voc.cfg darknet53.conv.74` -- Gitblit v1.10.0