From 40cc1046395385dd256012810866eba34904f034 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Mon, 28 Sep 2015 21:32:28 +0000
Subject: [PATCH] idk
---
src/yolo.c | 6 +
src/swag.c | 71 +++++++++++------------
cfg/yolo.cfg | 10 +-
Makefile | 4
src/parser.c | 1
src/region_layer.c | 46 +++++++++++---
src/layer.h | 1
7 files changed, 84 insertions(+), 55 deletions(-)
diff --git a/Makefile b/Makefile
index cdf200c..22e89a1 100644
--- a/Makefile
+++ b/Makefile
@@ -1,5 +1,5 @@
-GPU=0
-OPENCV=0
+GPU=1
+OPENCV=1
DEBUG=0
ARCH= --gpu-architecture=compute_20 --gpu-code=compute_20
diff --git a/cfg/yolo.cfg b/cfg/yolo.cfg
index ab46729..140de88 100644
--- a/cfg/yolo.cfg
+++ b/cfg/yolo.cfg
@@ -1,17 +1,17 @@
[net]
batch=64
-subdivisions=64
+subdivisions=4
height=448
width=448
channels=3
-learning_rate=0.001
+learning_rate=0.01
momentum=0.9
decay=0.0005
policy=steps
-steps=50, 5000
-scales=10, .1
-max_batches = 8000
+steps=20000
+scales=.1
+max_batches = 35000
[crop]
crop_width=448
diff --git a/src/layer.h b/src/layer.h
index d13cdbf..808aba4 100644
--- a/src/layer.h
+++ b/src/layer.h
@@ -28,6 +28,7 @@
ACTIVATION activation;
COST_TYPE cost_type;
int batch;
+ int forced;
int inputs;
int outputs;
int truths;
diff --git a/src/parser.c b/src/parser.c
index 7ea1b3f..6daeb13 100644
--- a/src/parser.c
+++ b/src/parser.c
@@ -187,6 +187,7 @@
layer.sqrt = option_find_int(options, "sqrt", 0);
layer.coord_scale = option_find_float(options, "coord_scale", 1);
+ layer.forced = option_find_int(options, "forced", 0);
layer.object_scale = option_find_float(options, "object_scale", 1);
layer.noobject_scale = option_find_float(options, "noobject_scale", 1);
layer.class_scale = option_find_float(options, "class_scale", 1);
diff --git a/src/region_layer.c b/src/region_layer.c
index 39af5ee..4d8c2a4 100644
--- a/src/region_layer.c
+++ b/src/region_layer.c
@@ -82,9 +82,12 @@
int best_index = -1;
float best_iou = 0;
- float best_rmse = 4;
+ float best_rmse = 20;
- if (!is_obj) continue;
+ if (!is_obj){
+ //printf(".");
+ continue;
+ }
int class_index = index + i*l.classes;
for(j = 0; j < l.classes; ++j) {
@@ -123,18 +126,38 @@
}
}
}
- int p_index = index + locations*l.classes + i*l.n + best_index;
- *(l.cost) -= l.noobject_scale * pow(l.output[p_index], 2);
- *(l.cost) += l.object_scale * pow(1-l.output[p_index], 2);
- avg_obj += l.output[p_index];
- l.delta[p_index+0] = l.object_scale * (1.-l.output[p_index]);
- if(l.rescore){
- l.delta[p_index+0] = l.object_scale * (best_iou - l.output[p_index]);
+ if(l.forced){
+ if(truth.w*truth.h < .1){
+ best_index = 1;
+ }else{
+ best_index = 0;
+ }
}
int box_index = index + locations*(l.classes + l.n) + (i*l.n + best_index) * l.coords;
int tbox_index = truth_index + 1 + l.classes;
+
+ box out = float_to_box(l.output + box_index);
+ out.x /= l.side;
+ out.y /= l.side;
+ if (l.sqrt) {
+ out.w = out.w*out.w;
+ out.h = out.h*out.h;
+ }
+ float iou = box_iou(out, truth);
+
+ //printf("%d", best_index);
+ int p_index = index + locations*l.classes + i*l.n + best_index;
+ *(l.cost) -= l.noobject_scale * pow(l.output[p_index], 2);
+ *(l.cost) += l.object_scale * pow(1-l.output[p_index], 2);
+ avg_obj += l.output[p_index];
+ l.delta[p_index] = l.object_scale * (1.-l.output[p_index]);
+
+ if(l.rescore){
+ l.delta[p_index] = l.object_scale * (iou - l.output[p_index]);
+ }
+
l.delta[box_index+0] = l.coord_scale*(state.truth[tbox_index + 0] - l.output[box_index + 0]);
l.delta[box_index+1] = l.coord_scale*(state.truth[tbox_index + 1] - l.output[box_index + 1]);
l.delta[box_index+2] = l.coord_scale*(state.truth[tbox_index + 2] - l.output[box_index + 2]);
@@ -144,14 +167,15 @@
l.delta[box_index+3] = l.coord_scale*(sqrt(state.truth[tbox_index + 3]) - l.output[box_index + 3]);
}
- *(l.cost) += pow(1-best_iou, 2);
- avg_iou += best_iou;
+ *(l.cost) += pow(1-iou, 2);
+ avg_iou += iou;
++count;
}
if(l.softmax){
gradient_array(l.output + index + locations*l.classes, locations*l.n*(1+l.coords),
LOGISTIC, l.delta + index + locations*l.classes);
}
+ //printf("\n");
}
printf("Region Avg IOU: %f, Pos Cat: %f, All Cat: %f, Pos Obj: %f, Any Obj: %f, count: %d\n", avg_iou/count, avg_cat/count, avg_allcat/(count*l.classes), avg_obj/count, avg_anyobj/(l.batch*locations*l.n), count);
}
diff --git a/src/swag.c b/src/swag.c
index 7058df5..ec58f0d 100644
--- a/src/swag.c
+++ b/src/swag.c
@@ -1,4 +1,5 @@
#include "network.h"
+#include "region_layer.h"
#include "detection_layer.h"
#include "cost_layer.h"
#include "utils.h"
@@ -11,40 +12,37 @@
char *voc_names[] = {"aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"};
-void draw_swag(image im, float *box, int side, int objectness, char *label, float thresh)
+void draw_swag(image im, float *predictions, int side, int num, char *label, float thresh)
{
int classes = 20;
- int elems = 4+classes+objectness;
- int j;
- int r, c;
+ int i,n;
- for(r = 0; r < side; ++r){
- for(c = 0; c < side; ++c){
- j = (r*side + c) * elems;
- float scale = 1;
- if(objectness) scale = 1 - box[j++];
- int class = max_index(box+j, classes);
- if(scale * box[j+class] > thresh){
- int width = sqrt(scale*box[j+class])*5 + 1;
- printf("%f %s\n", scale * box[j+class], voc_names[class]);
+ for(i = 0; i < side*side; ++i){
+ int row = i / side;
+ int col = i % side;
+ for(n = 0; n < num; ++n){
+ int p_index = side*side*classes + i*num + n;
+ int box_index = side*side*(classes + num) + (i*num + n)*4;
+ int class_index = i*classes;
+ float scale = predictions[p_index];
+ int class = max_index(predictions+class_index, classes);
+ float prob = scale * predictions[class_index + class];
+ if(prob > thresh){
+ int width = sqrt(prob)*5 + 1;
+ printf("%f %s\n", prob, voc_names[class]);
float red = get_color(0,class,classes);
float green = get_color(1,class,classes);
float blue = get_color(2,class,classes);
+ box b = float_to_box(predictions+box_index);
+ b.x = (b.x + col)/side;
+ b.y = (b.y + row)/side;
+ b.w = b.w*b.w;
+ b.h = b.h*b.h;
- j += classes;
- float x = box[j+0];
- float y = box[j+1];
- x = (x+c)/side;
- y = (y+r)/side;
- float w = box[j+2]; //*maxwidth;
- float h = box[j+3]; //*maxheight;
- h = h*h;
- w = w*w;
-
- int left = (x-w/2)*im.w;
- int right = (x+w/2)*im.w;
- int top = (y-h/2)*im.h;
- int bot = (y+h/2)*im.h;
+ int left = (b.x-b.w/2)*im.w;
+ int right = (b.x+b.w/2)*im.w;
+ int top = (b.y-b.h/2)*im.h;
+ int bot = (b.y+b.h/2)*im.h;
draw_box_width(im, left, top, right, bot, width, red, green, blue);
}
}
@@ -103,13 +101,13 @@
printf("Loaded: %lf seconds\n", sec(clock()-time));
-/*
- image im = float_to_image(net.w, net.h, 3, train.X.vals[113]);
- image copy = copy_image(im);
- draw_swag(copy, train.y.vals[113], 7, "truth");
- cvWaitKey(0);
- free_image(copy);
- */
+ /*
+ image im = float_to_image(net.w, net.h, 3, train.X.vals[113]);
+ image copy = copy_image(im);
+ draw_swag(copy, train.y.vals[113], 7, "truth");
+ cvWaitKey(0);
+ free_image(copy);
+ */
time=clock();
float loss = train_network(net, train);
@@ -270,7 +268,7 @@
if(weightfile){
load_weights(&net, weightfile);
}
- detection_layer layer = get_network_detection_layer(net);
+ region_layer layer = net.layers[net.n-1];
set_batch_network(&net, 1);
srand(2222222);
clock_t time;
@@ -292,7 +290,8 @@
time=clock();
float *predictions = network_predict(net, X);
printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
- draw_swag(im, predictions, 7, layer.objectness, "predictions", thresh);
+ draw_swag(im, predictions, layer.side, layer.n, "predictions", thresh);
+ show_image(sized, "resized");
free_image(im);
free_image(sized);
#ifdef OPENCV
diff --git a/src/yolo.c b/src/yolo.c
index b2c89d8..4b241f3 100644
--- a/src/yolo.c
+++ b/src/yolo.c
@@ -65,7 +65,6 @@
if(weightfile){
load_weights(&net, weightfile);
}
- detection_layer layer = get_network_detection_layer(net);
int imgs = 128;
int i = *net.seen/imgs;
@@ -74,11 +73,16 @@
int N = plist->size;
paths = (char **)list_to_array(plist);
+ if(i*imgs > N*80){
+ net.layers[net.n-1].objectness = 0;
+ net.layers[net.n-1].joint = 1;
+ }
if(i*imgs > N*120){
net.layers[net.n-1].rescore = 1;
}
data train, buffer;
+ detection_layer layer = get_network_detection_layer(net);
int classes = layer.classes;
int background = layer.objectness;
int side = sqrt(get_detection_layer_locations(layer));
--
Gitblit v1.10.0