From 4373f897f1a5efd1a58746c44430dc33df925415 Mon Sep 17 00:00:00 2001
From: AlexeyAB <alexeyab84@gmail.com>
Date: Wed, 07 Feb 2018 22:07:19 +0000
Subject: [PATCH] Fixed densenet201_yolo.cfg - burn_in and poly policy, that changes learning rate

---
 README.md |   11 ++++++-----
 1 files changed, 6 insertions(+), 5 deletions(-)

diff --git a/README.md b/README.md
index 05b9cca..20efec6 100644
--- a/README.md
+++ b/README.md
@@ -90,6 +90,7 @@
 * 194 MB VOC-model - WebCamera #0: `darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights -c 0`
 * 186 MB Yolo9000 - image: `darknet.exe detector test cfg/combine9k.data yolo9000.cfg yolo9000.weights`
 * 186 MB Yolo9000 - video: `darknet.exe detector demo cfg/combine9k.data yolo9000.cfg yolo9000.weights test.mp4`
+* Remeber to put data/9k.tree and data/coco9k.map under the same folder of your app if you use the cpp api to build an app
 * To process a list of images `image_list.txt` and save results of detection to `result.txt` use:                             
     `darknet.exe detector test data/voc.data yolo-voc.cfg yolo-voc.weights < image_list.txt > result.txt`
     You can comment this line so that each image does not require pressing the button ESC: https://github.com/AlexeyAB/darknet/blob/6ccb41808caf753feea58ca9df79d6367dedc434/src/detector.c#L509
@@ -130,7 +131,7 @@
 
 2. If you have other version of **CUDA (not 8.0)** then open `build\darknet\darknet.vcxproj` by using Notepad, find 2 places with "CUDA 8.0" and change it to your CUDA-version, then do step 1
 
-3. If you **don't have GPU**, but have **MSVS 2015 and OpenCV 3.0** (with paths: `C:\opencv_3.0\opencv\build\include` & `C:\opencv_3.0\opencv\build\x64\vc14\lib`), then start MSVS, open `build\darknet\darknet_no_gpu.sln`, set **x64** and **Release**, and do the: Build -> Build darknet
+3. If you **don't have GPU**, but have **MSVS 2015 and OpenCV 3.0** (with paths: `C:\opencv_3.0\opencv\build\include` & `C:\opencv_3.0\opencv\build\x64\vc14\lib`), then start MSVS, open `build\darknet\darknet_no_gpu.sln`, set **x64** and **Release**, and do the: Build -> Build darknet_no_gpu
 
 4. If you have **OpenCV 2.4.13** instead of 3.0 then you should change pathes after `\darknet.sln` is opened
 
@@ -194,7 +195,7 @@
 
 6. Set `batch=64` and `subdivisions=8` in the file `yolo-voc.2.0.cfg`: [link](https://github.com/AlexeyAB/darknet/blob/master/build/darknet/x64/yolo-voc.2.0.cfg#L2)
 
-7. Start training by using `train_voc.cmd` or by using the command line: `darknet.exe detector train data/voc.data yolo-voc.2.0.cfg darknet19_448.conv.23`
+7. Start training by using `train_voc.cmd` or by using the command line: `darknet.exe detector train data/voc.data yolo-voc.2.0.cfg darknet19_448.conv.23` (**Note:** If you are using CPU, try `darknet_no_gpu.exe` instead of `darknet.exe`.)
 
 If required change pathes in the file `build\darknet\x64\data\voc.data`
 
@@ -215,9 +216,9 @@
   * change line batch to [`batch=64`](https://github.com/AlexeyAB/darknet/blob/master/build/darknet/x64/yolo-voc.2.0.cfg#L2)
   * change line subdivisions to [`subdivisions=8`](https://github.com/AlexeyAB/darknet/blob/master/build/darknet/x64/yolo-voc.2.0.cfg#L3)
   * change line `classes=20` to your number of objects
-  * change line #237 from [`filters=125`](https://github.com/AlexeyAB/darknet/blob/master/cfg/yolo-voc.2.0.cfg#L224) to: filters=(classes + 5)*5, so if `classes=2` then should be `filter=35`
+  * change line #237 from [`filters=125`](https://github.com/AlexeyAB/darknet/blob/master/cfg/yolo-voc.2.0.cfg#L224) to: filters=(classes + 5)x5, so if `classes=2` then should be `filters=35`. Or if you use `classes=1` then write `filters=30`, **do not write in the cfg-file: filters=(classes + 5)x5**.
   
-  (Generally `filters` depends on the `classes`, `num` and `coords`, i.e. equal to `(classes + coords + 1)*num`)
+  (Generally `filters` depends on the `classes`, `num` and `coords`, i.e. equal to `(classes + coords + 1)*num`, where `num` is number of anchors)
 
   So for example, for 2 objects, your file `yolo-obj.cfg` should differ from `yolo-voc.2.0.cfg` in such lines:
 
@@ -271,7 +272,7 @@
 
 8. Start training by using the command line: `darknet.exe detector train data/obj.data yolo-obj.cfg darknet19_448.conv.23`
 
-    (file `yolo-obj_xxx.weights` will be saved to the `build\darknet\x64\backup\` for each 100 iterations until 1000 iterations has been reached, and after for each 1000 iterations)
+    (file `yolo-obj_xxx.weights` will be saved to the `build\darknet\x64\backup\` for each 100 iterations)
 
 9. After training is complete - get result `yolo-obj_final.weights` from path `build\darknet\x64\backup\`
 

--
Gitblit v1.10.0