From 45e03601d1dd33cea959638d343af7252b0cd347 Mon Sep 17 00:00:00 2001 From: Alexey <AlexeyAB@users.noreply.github.com> Date: Sat, 17 Dec 2016 10:56:46 +0000 Subject: [PATCH] Update Readme.md - training for custom objects --- README.md | 59 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 files changed, 59 insertions(+), 0 deletions(-) diff --git a/README.md b/README.md index d0eb153..794829b 100644 --- a/README.md +++ b/README.md @@ -137,3 +137,62 @@ 2. Then stop and by using partially-trained model `/backup/yolo-voc_1000.weights` run training with multigpu (up to 4 GPUs): `darknet.exe detector train data/voc.data yolo-voc.cfg yolo-voc_1000.weights -gpus 0,1,2,3` https://groups.google.com/d/msg/darknet/NbJqonJBTSY/Te5PfIpuCAAJ + +## How to train (to detect your custom objects): + +1. Create file `yolo-obj.cfg` with the same content as in `yolo-voc.cfg` (or copy `yolo-voc.cfg` to `yolo-obj.cfg)` and: + + * change line `classes=20` to your number of objects + * change line `filters=425` to `filters=(classes + 5)*5` (generally this depends on the `num` and `coords`, i.e. equal to `(classes + coords + 1)*num`) + + For example, for 2 objects, your file `yolo-obj.cfg` should differ from `yolo-voc.cfg` in such lines: + + ``` + [convolutional] + filters=35 + + [region] + classes=2 + ``` + +2. Create file `obj.names` in the directory `build\darknet\x64\data\`, with objects names - each in new line + +3. Create file `obj.data` in the directory `build\darknet\x64\data\`, containing (where **classes = number of objects**): + + ``` + classes= 2 + train = train.txt + valid = test.txt + names = obj.names + backup = backup/ + ``` + +4. Put image-files (.jpg) of your objects in the directory `build\darknet\x64\data\obj\` + +5. Create `.txt`-file for each `.jpg`-image-file - with the same name, but with `.txt`-extension, and put to file: object number and object coordinates on this image, for each object in new line: `<object-class> <x> <y> <width> <height>` + + Where: + * `<object-class>` - integer number of object from `0` to `(classes-1)` + * `<x> <y> <width> <height>` - float values relative to width and height of image, it can be equal from 0.0 to 1.0 + * atention: `<x> <y>` - are center of rectangle (are not top-left corner) + + For example for `img1.jpg` you should create `img1.txt` containing: + + ``` + 1 0.716797 0.395833 0.216406 0.147222 + 0 0.687109 0.379167 0.255469 0.158333 + 1 0.420312 0.395833 0.140625 0.166667 + ``` + +6. Create file `train.txt` in directory `build\darknet\x64\data\`, with filenames of your images, each filename in new line, with path relative to `darknet.exe`, for example containing: + + ``` + data/obj/img1.jpg + data/obj/img2.jpg + data/obj/img3.jpg + ``` + +7. Download pre-trained weights for the convolutional layers (76 MB): http://pjreddie.com/media/files/darknet19_448.conv.23 and put to the directory `build\darknet\x64` + +8. Start training by using the command line: `darknet.exe detector train data/obj.data yolo-obj.cfg darknet19_448.conv.23` + -- Gitblit v1.10.0