From 4625a16ffdcf3b9f7bfc37046e70f4ecb87234ab Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Mon, 06 Jun 2016 20:22:45 +0000
Subject: [PATCH] tactics
---
cfg/gru.cfg | 34 +++++++++++
src/tag.c | 6 +
src/convolutional_layer.c | 2
src/blas.c | 8 ++
src/blas.h | 1
src/gru_layer.c | 80 ++++++++++++++++++++++++++
src/layer.h | 8 ++
src/detection_layer.c | 32 ++++++++++
8 files changed, 169 insertions(+), 2 deletions(-)
diff --git a/cfg/gru.cfg b/cfg/gru.cfg
new file mode 100644
index 0000000..f9a0699
--- /dev/null
+++ b/cfg/gru.cfg
@@ -0,0 +1,34 @@
+[net]
+subdivisions=1
+inputs=256
+batch = 1
+momentum=0.9
+decay=0.001
+time_steps=1
+learning_rate=0.5
+
+policy=poly
+power=4
+max_batches=2000
+
+[gru]
+batch_normalize=1
+output = 1024
+
+[gru]
+batch_normalize=1
+output = 1024
+
+[gru]
+batch_normalize=1
+output = 1024
+
+[connected]
+output=256
+activation=linear
+
+[softmax]
+
+[cost]
+type=sse
+
diff --git a/src/blas.c b/src/blas.c
index 35a4c40..00f0c3a 100644
--- a/src/blas.c
+++ b/src/blas.c
@@ -2,6 +2,14 @@
#include "math.h"
#include <assert.h>
+void weighted_sum_cpu(float *a, float *b, float *s, int n, float *c)
+{
+ int i;
+ for(i = 0; i < n; ++i){
+ c[i] = s[i]*a[i] + (1-s[i])*(b ? b[i] : 0);
+ }
+}
+
void shortcut_cpu(int batch, int w1, int h1, int c1, float *add, int w2, int h2, int c2, float *out)
{
int stride = w1/w2;
diff --git a/src/blas.h b/src/blas.h
index 47d930c..b4cfcf2 100644
--- a/src/blas.h
+++ b/src/blas.h
@@ -31,6 +31,7 @@
void smooth_l1_cpu(int n, float *pred, float *truth, float *delta, float *error);
void l2_cpu(int n, float *pred, float *truth, float *delta, float *error);
+void weighted_sum_cpu(float *a, float *b, float *s, int num, float *c);
#ifdef GPU
void axpy_ongpu(int N, float ALPHA, float * X, int INCX, float * Y, int INCY);
diff --git a/src/convolutional_layer.c b/src/convolutional_layer.c
index 5575aac..c377802 100644
--- a/src/convolutional_layer.c
+++ b/src/convolutional_layer.c
@@ -413,6 +413,7 @@
}
*/
+/*
if(l.binary){
int m = l.n;
int k = l.size*l.size*l.c;
@@ -434,6 +435,7 @@
activate_array(l.output, m*n*l.batch, l.activation);
return;
}
+ */
int m = l.n;
int k = l.size*l.size*l.c;
diff --git a/src/detection_layer.c b/src/detection_layer.c
index 90b672b..1adda06 100644
--- a/src/detection_layer.c
+++ b/src/detection_layer.c
@@ -175,6 +175,38 @@
LOGISTIC, l.delta + index + locations*l.classes);
}
}
+
+ if(1){
+ float *costs = calloc(l.batch*locations*l.n, sizeof(float));
+ for (b = 0; b < l.batch; ++b) {
+ int index = b*l.inputs;
+ for (i = 0; i < locations; ++i) {
+ int truth_index = (b*locations + i)*(1+l.coords+l.classes);
+ for (j = 0; j < l.n; ++j) {
+ int p_index = index + locations*l.classes + i*l.n + j;
+ costs[b*locations*l.n + i*l.n + j] = l.delta[p_index]*l.delta[p_index];
+ }
+ }
+ }
+ int indexes[100];
+ top_k(costs, l.batch*locations*l.n, 100, indexes);
+ float cutoff = costs[indexes[99]];
+ for (b = 0; b < l.batch; ++b) {
+ int index = b*l.inputs;
+ for (i = 0; i < locations; ++i) {
+ int truth_index = (b*locations + i)*(1+l.coords+l.classes);
+ for (j = 0; j < l.n; ++j) {
+ int p_index = index + locations*l.classes + i*l.n + j;
+ if (l.delta[p_index]*l.delta[p_index] < cutoff) l.delta[p_index] = 0;
+ }
+ }
+ }
+ free(costs);
+ }
+
+
+
+
printf("Detection Avg IOU: %f, Pos Cat: %f, All Cat: %f, Pos Obj: %f, Any Obj: %f, count: %d\n", avg_iou/count, avg_cat/count, avg_allcat/(count*l.classes), avg_obj/count, avg_anyobj/(l.batch*locations*l.n), count);
}
}
diff --git a/src/gru_layer.c b/src/gru_layer.c
index 1c41cbf..4c720ce 100644
--- a/src/gru_layer.c
+++ b/src/gru_layer.c
@@ -76,6 +76,14 @@
l.outputs = outputs;
l.output = calloc(outputs*batch*steps, sizeof(float));
l.delta = calloc(outputs*batch*steps, sizeof(float));
+ l.state = calloc(outputs*batch, sizeof(float));
+ l.prev_state = calloc(outputs*batch, sizeof(float));
+ l.forgot_state = calloc(outputs*batch, sizeof(float));
+ l.forgot_delta = calloc(outputs*batch, sizeof(float));
+
+ l.r_cpu = calloc(outputs*batch, sizeof(float));
+ l.z_cpu = calloc(outputs*batch, sizeof(float));
+ l.h_cpu = calloc(outputs*batch, sizeof(float));
#ifdef GPU
l.forgot_state_gpu = cuda_make_array(l.output, batch*outputs);
@@ -101,6 +109,78 @@
void forward_gru_layer(layer l, network_state state)
{
+ network_state s = {0};
+ s.train = state.train;
+ int i;
+ layer input_z_layer = *(l.input_z_layer);
+ layer input_r_layer = *(l.input_r_layer);
+ layer input_h_layer = *(l.input_h_layer);
+
+ layer state_z_layer = *(l.state_z_layer);
+ layer state_r_layer = *(l.state_r_layer);
+ layer state_h_layer = *(l.state_h_layer);
+
+ fill_cpu(l.outputs * l.batch * l.steps, 0, input_z_layer.delta, 1);
+ fill_cpu(l.outputs * l.batch * l.steps, 0, input_r_layer.delta, 1);
+ fill_cpu(l.outputs * l.batch * l.steps, 0, input_h_layer.delta, 1);
+
+ fill_cpu(l.outputs * l.batch * l.steps, 0, state_z_layer.delta, 1);
+ fill_cpu(l.outputs * l.batch * l.steps, 0, state_r_layer.delta, 1);
+ fill_cpu(l.outputs * l.batch * l.steps, 0, state_h_layer.delta, 1);
+ if(state.train) {
+ fill_cpu(l.outputs * l.batch * l.steps, 0, l.delta, 1);
+ copy_cpu(l.outputs*l.batch, l.state, 1, l.prev_state, 1);
+ }
+
+ for (i = 0; i < l.steps; ++i) {
+ s.input = l.state;
+ forward_connected_layer(state_z_layer, s);
+ forward_connected_layer(state_r_layer, s);
+
+ s.input = state.input;
+ forward_connected_layer(input_z_layer, s);
+ forward_connected_layer(input_r_layer, s);
+ forward_connected_layer(input_h_layer, s);
+
+
+ copy_cpu(l.outputs*l.batch, input_z_layer.output, 1, l.z_cpu, 1);
+ axpy_cpu(l.outputs*l.batch, 1, state_z_layer.output, 1, l.z_cpu, 1);
+
+ copy_cpu(l.outputs*l.batch, input_r_layer.output, 1, l.r_cpu, 1);
+ axpy_cpu(l.outputs*l.batch, 1, state_r_layer.output, 1, l.r_cpu, 1);
+
+ activate_array(l.z_cpu, l.outputs*l.batch, LOGISTIC);
+ activate_array(l.r_cpu, l.outputs*l.batch, LOGISTIC);
+
+ copy_cpu(l.outputs*l.batch, l.state, 1, l.forgot_state, 1);
+ mul_cpu(l.outputs*l.batch, l.r_cpu, 1, l.forgot_state, 1);
+
+ s.input = l.forgot_state;
+ forward_connected_layer(state_h_layer, s);
+
+ copy_cpu(l.outputs*l.batch, input_h_layer.output, 1, l.h_cpu, 1);
+ axpy_cpu(l.outputs*l.batch, 1, state_h_layer.output, 1, l.h_cpu, 1);
+
+ #ifdef USET
+ activate_array(l.h_cpu, l.outputs*l.batch, TANH);
+ #else
+ activate_array(l.h_cpu, l.outputs*l.batch, LOGISTIC);
+ #endif
+
+ weighted_sum_cpu(l.state, l.h_cpu, l.z_cpu, l.outputs*l.batch, l.output);
+
+ copy_cpu(l.outputs*l.batch, l.output, 1, l.state, 1);
+
+ state.input += l.inputs*l.batch;
+ l.output += l.outputs*l.batch;
+ increment_layer(&input_z_layer, 1);
+ increment_layer(&input_r_layer, 1);
+ increment_layer(&input_h_layer, 1);
+
+ increment_layer(&state_z_layer, 1);
+ increment_layer(&state_r_layer, 1);
+ increment_layer(&state_h_layer, 1);
+ }
}
void backward_gru_layer(layer l, network_state state)
diff --git a/src/layer.h b/src/layer.h
index d53fe38..d2250a6 100644
--- a/src/layer.h
+++ b/src/layer.h
@@ -28,6 +28,7 @@
CRNN,
BATCHNORM,
NETWORK,
+ XNOR,
BLANK
} LAYER_TYPE;
@@ -102,6 +103,9 @@
char *cfilters;
float *filter_updates;
float *state;
+ float *prev_state;
+ float *forgot_state;
+ float *forgot_delta;
float *state_delta;
float *concat;
@@ -159,6 +163,10 @@
struct layer *input_h_layer;
struct layer *state_h_layer;
+ float *z_cpu;
+ float *r_cpu;
+ float *h_cpu;
+
size_t workspace_size;
#ifdef GPU
diff --git a/src/tag.c b/src/tag.c
index a00a161..f97621c 100644
--- a/src/tag.c
+++ b/src/tag.c
@@ -6,7 +6,7 @@
#include "opencv2/highgui/highgui_c.h"
#endif
-void train_tag(char *cfgfile, char *weightfile)
+void train_tag(char *cfgfile, char *weightfile, int clear)
{
data_seed = time(0);
srand(time(0));
@@ -18,6 +18,7 @@
if(weightfile){
load_weights(&net, weightfile);
}
+ if(clear) *net.seen = 0;
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
int imgs = 1024;
list *plist = get_paths("/home/pjreddie/tag/train.list");
@@ -138,10 +139,11 @@
return;
}
+ int clear = find_arg(argc, argv, "-clear");
char *cfg = argv[3];
char *weights = (argc > 4) ? argv[4] : 0;
char *filename = (argc > 5) ? argv[5] : 0;
- if(0==strcmp(argv[2], "train")) train_tag(cfg, weights);
+ if(0==strcmp(argv[2], "train")) train_tag(cfg, weights, clear);
else if(0==strcmp(argv[2], "test")) test_tag(cfg, weights, filename);
}
--
Gitblit v1.10.0