From 481b57a96a9ef29b112caec1bb3e17ffb043ceae Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Sun, 25 Sep 2016 06:12:54 +0000
Subject: [PATCH] So I have this new programming paradigm.......

---
 src/detector.c |  121 +++++++++++++---------------------------
 1 files changed, 39 insertions(+), 82 deletions(-)

diff --git a/src/detector.c b/src/detector.c
index 9498750..1f48c61 100644
--- a/src/detector.c
+++ b/src/detector.c
@@ -1,16 +1,16 @@
 #include "network.h"
-#include "detection_layer.h"
+#include "region_layer.h"
 #include "cost_layer.h"
 #include "utils.h"
 #include "parser.h"
 #include "box.h"
+#include "demo.h"
 
 #ifdef OPENCV
 #include "opencv2/highgui/highgui_c.h"
 #endif
 
 static char *voc_names[] = {"aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"};
-static image voc_labels[20];
 
 void train_detector(char *cfgfile, char *weightfile)
 {
@@ -49,13 +49,14 @@
     args.num_boxes = l.max_boxes;
     args.d = &buffer;
     args.type = DETECTION_DATA;
+    args.threads = 4;
 
     args.angle = net.angle;
     args.exposure = net.exposure;
     args.saturation = net.saturation;
     args.hue = net.hue;
 
-    pthread_t load_thread = load_data_in_thread(args);
+    pthread_t load_thread = load_data(args);
     clock_t time;
     //while(i*imgs < N*120){
     while(get_current_batch(net) < net.max_batches){
@@ -63,7 +64,7 @@
         time=clock();
         pthread_join(load_thread, 0);
         train = buffer;
-        load_thread = load_data_in_thread(args);
+        load_thread = load_data(args);
 
 /*
         int k;
@@ -102,44 +103,6 @@
     save_weights(net, buff);
 }
 
-static void convert_detections(float *predictions, int classes, int num, int square, int side, int w, int h, float thresh, float **probs, box *boxes, int only_objectness)
-{
-    int i,j,n;
-    //int per_cell = 5*num+classes;
-    for (i = 0; i < side*side; ++i){
-        int row = i / side;
-        int col = i % side;
-        for(n = 0; n < num; ++n){
-            int index = i*num + n;
-            int p_index = index * (classes + 5) + 4;
-            float scale = predictions[p_index];
-            int box_index = index * (classes + 5);
-            boxes[index].x = (predictions[box_index + 0] + col + .5) / side * w;
-            boxes[index].y = (predictions[box_index + 1] + row + .5) / side * h;
-            if(0){
-                boxes[index].x = (logistic_activate(predictions[box_index + 0]) + col) / side * w;
-                boxes[index].y = (logistic_activate(predictions[box_index + 1]) + row) / side * h;
-            }
-            boxes[index].w = pow(logistic_activate(predictions[box_index + 2]), (square?2:1)) * w;
-            boxes[index].h = pow(logistic_activate(predictions[box_index + 3]), (square?2:1)) * h;
-            if(1){
-                boxes[index].x = ((col + .5)/side + predictions[box_index + 0] * .5) * w;
-                boxes[index].y = ((row + .5)/side + predictions[box_index + 1] * .5) * h;
-                boxes[index].w = (exp(predictions[box_index + 2]) * .5) * w;
-                boxes[index].h = (exp(predictions[box_index + 3]) * .5) * h;
-            }
-            for(j = 0; j < classes; ++j){
-                int class_index = index * (classes + 5) + 5;
-                float prob = scale*predictions[class_index+j];
-                probs[index][j] = (prob > thresh) ? prob : 0;
-            }
-            if(only_objectness){
-                probs[index][0] = scale;
-            }
-        }
-    }
-}
-
 void print_detector_detections(FILE **fps, char *id, box *boxes, float **probs, int total, int classes, int w, int h)
 {
     int i, j;
@@ -179,7 +142,6 @@
 
     layer l = net.layers[net.n-1];
     int classes = l.classes;
-    int side = l.w;
 
     int j;
     FILE **fps = calloc(classes, sizeof(FILE *));
@@ -188,9 +150,9 @@
         snprintf(buff, 1024, "%s%s.txt", base, voc_names[j]);
         fps[j] = fopen(buff, "w");
     }
-    box *boxes = calloc(side*side*l.n, sizeof(box));
-    float **probs = calloc(side*side*l.n, sizeof(float *));
-    for(j = 0; j < side*side*l.n; ++j) probs[j] = calloc(classes, sizeof(float *));
+    box *boxes = calloc(l.w*l.h*l.n, sizeof(box));
+    float **probs = calloc(l.w*l.h*l.n, sizeof(float *));
+    for(j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(classes, sizeof(float *));
 
     int m = plist->size;
     int i=0;
@@ -235,12 +197,12 @@
             char *path = paths[i+t-nthreads];
             char *id = basecfg(path);
             float *X = val_resized[t].data;
-            float *predictions = network_predict(net, X);
+            network_predict(net, X);
             int w = val[t].w;
             int h = val[t].h;
-            convert_detections(predictions, classes, l.n, 0, side, w, h, thresh, probs, boxes, 0);
-            if (nms) do_nms_sort(boxes, probs, side*side*l.n, classes, nms);
-            print_detector_detections(fps, id, boxes, probs, side*side*l.n, classes, w, h);
+            get_region_boxes(l, w, h, thresh, probs, boxes, 0);
+            if (nms) do_nms_sort(boxes, probs, l.w*l.h*l.n, classes, nms);
+            print_detector_detections(fps, id, boxes, probs, l.w*l.h*l.n, classes, w, h);
             free(id);
             free_image(val[t]);
             free_image(val_resized[t]);
@@ -268,8 +230,6 @@
 
     layer l = net.layers[net.n-1];
     int classes = l.classes;
-    int square = l.sqrt;
-    int side = l.side;
 
     int j, k;
     FILE **fps = calloc(classes, sizeof(FILE *));
@@ -278,9 +238,9 @@
         snprintf(buff, 1024, "%s%s.txt", base, voc_names[j]);
         fps[j] = fopen(buff, "w");
     }
-    box *boxes = calloc(side*side*l.n, sizeof(box));
-    float **probs = calloc(side*side*l.n, sizeof(float *));
-    for(j = 0; j < side*side*l.n; ++j) probs[j] = calloc(classes, sizeof(float *));
+    box *boxes = calloc(l.w*l.h*l.n, sizeof(box));
+    float **probs = calloc(l.w*l.h*l.n, sizeof(float *));
+    for(j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(classes, sizeof(float *));
 
     int m = plist->size;
     int i=0;
@@ -299,18 +259,19 @@
         image orig = load_image_color(path, 0, 0);
         image sized = resize_image(orig, net.w, net.h);
         char *id = basecfg(path);
-        float *predictions = network_predict(net, sized.data);
-        convert_detections(predictions, classes, l.n, square, l.w, 1, 1, thresh, probs, boxes, 1);
-        if (nms) do_nms(boxes, probs, side*side*l.n, 1, nms);
+        network_predict(net, sized.data);
+        get_region_boxes(l, 1, 1, thresh, probs, boxes, 1);
+        if (nms) do_nms(boxes, probs, l.w*l.h*l.n, 1, nms);
 
-        char *labelpath = find_replace(path, "images", "labels");
-        labelpath = find_replace(labelpath, "JPEGImages", "labels");
-        labelpath = find_replace(labelpath, ".jpg", ".txt");
-        labelpath = find_replace(labelpath, ".JPEG", ".txt");
+        char labelpath[4096];
+        find_replace(path, "images", "labels", labelpath);
+        find_replace(labelpath, "JPEGImages", "labels", labelpath);
+        find_replace(labelpath, ".jpg", ".txt", labelpath);
+        find_replace(labelpath, ".JPEG", ".txt", labelpath);
 
         int num_labels = 0;
         box_label *truth = read_boxes(labelpath, &num_labels);
-        for(k = 0; k < side*side*l.n; ++k){
+        for(k = 0; k < l.w*l.h*l.n; ++k){
             if(probs[k][0] > thresh){
                 ++proposals;
             }
@@ -319,7 +280,7 @@
             ++total;
             box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h};
             float best_iou = 0;
-            for(k = 0; k < side*side*l.n; ++k){
+            for(k = 0; k < l.w*l.h*l.n; ++k){
                 float iou = box_iou(boxes[k], t);
                 if(probs[k][0] > thresh && iou > best_iou){
                     best_iou = iou;
@@ -340,13 +301,12 @@
 
 void test_detector(char *cfgfile, char *weightfile, char *filename, float thresh)
 {
-
+    image *alphabet = load_alphabet();
     network net = parse_network_cfg(cfgfile);
     if(weightfile){
         load_weights(&net, weightfile);
     }
-    detection_layer l = net.layers[net.n-1];
-    l.side = l.w;
+    layer l = net.layers[net.n-1];
     set_batch_network(&net, 1);
     srand(2222222);
     clock_t time;
@@ -354,9 +314,9 @@
     char *input = buff;
     int j;
     float nms=.4;
-    box *boxes = calloc(l.side*l.side*l.n, sizeof(box));
-    float **probs = calloc(l.side*l.side*l.n, sizeof(float *));
-    for(j = 0; j < l.side*l.side*l.n; ++j) probs[j] = calloc(l.classes, sizeof(float *));
+    box *boxes = calloc(l.w*l.h*l.n, sizeof(box));
+    float **probs = calloc(l.w*l.h*l.n, sizeof(float *));
+    for(j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(l.classes, sizeof(float *));
     while(1){
         if(filename){
             strncpy(input, filename, 256);
@@ -371,12 +331,12 @@
         image sized = resize_image(im, net.w, net.h);
         float *X = sized.data;
         time=clock();
-        float *predictions = network_predict(net, X);
+        network_predict(net, X);
         printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
-        convert_detections(predictions, l.classes, l.n, 0, l.w, 1, 1, thresh, probs, boxes, 0);
-        if (nms) do_nms_sort(boxes, probs, l.side*l.side*l.n, l.classes, nms);
-        //draw_detections(im, l.side*l.side*l.n, thresh, boxes, probs, voc_names, voc_labels, 20);
-        draw_detections(im, l.side*l.side*l.n, thresh, boxes, probs, voc_names, voc_labels, 20);
+        get_region_boxes(l, 1, 1, thresh, probs, boxes, 0);
+        if (nms) do_nms_sort(boxes, probs, l.w*l.h*l.n, l.classes, nms);
+        //draw_detections(im, l.w*l.h*l.n, thresh, boxes, probs, voc_names, voc_labels, 20);
+        draw_detections(im, l.w*l.h*l.n, thresh, boxes, probs, voc_names, alphabet, 20);
         save_image(im, "predictions");
         show_image(im, "predictions");
 
@@ -392,14 +352,10 @@
 
 void run_detector(int argc, char **argv)
 {
-    int i;
-    for(i = 0; i < 20; ++i){
-        char buff[256];
-        sprintf(buff, "data/labels/%s.png", voc_names[i]);
-        voc_labels[i] = load_image_color(buff, 0, 0);
-    }
-
+    char *prefix = find_char_arg(argc, argv, "-prefix", 0);
     float thresh = find_float_arg(argc, argv, "-thresh", .2);
+    int cam_index = find_int_arg(argc, argv, "-c", 0);
+    int frame_skip = find_int_arg(argc, argv, "-s", 0);
     if(argc < 4){
         fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
         return;
@@ -412,4 +368,5 @@
     else if(0==strcmp(argv[2], "train")) train_detector(cfg, weights);
     else if(0==strcmp(argv[2], "valid")) validate_detector(cfg, weights);
     else if(0==strcmp(argv[2], "recall")) validate_detector_recall(cfg, weights);
+    else if(0==strcmp(argv[2], "demo")) demo(cfg, weights, thresh, cam_index, filename, voc_names, 20, frame_skip, prefix);
 }

--
Gitblit v1.10.0