From 481b57a96a9ef29b112caec1bb3e17ffb043ceae Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Sun, 25 Sep 2016 06:12:54 +0000
Subject: [PATCH] So I have this new programming paradigm.......
---
src/network.c | 113 ++++----------------------------------------------------
1 files changed, 9 insertions(+), 104 deletions(-)
diff --git a/src/network.c b/src/network.c
index 72c8943..01b7962 100644
--- a/src/network.c
+++ b/src/network.c
@@ -15,7 +15,6 @@
#include "local_layer.h"
#include "convolutional_layer.h"
#include "activation_layer.h"
-#include "deconvolutional_layer.h"
#include "detection_layer.h"
#include "region_layer.h"
#include "normalization_layer.h"
@@ -153,49 +152,7 @@
if(l.delta){
scal_cpu(l.outputs * l.batch, 0, l.delta, 1);
}
- if(l.type == CONVOLUTIONAL){
- forward_convolutional_layer(l, state);
- } else if(l.type == DECONVOLUTIONAL){
- forward_deconvolutional_layer(l, state);
- } else if(l.type == ACTIVE){
- forward_activation_layer(l, state);
- } else if(l.type == LOCAL){
- forward_local_layer(l, state);
- } else if(l.type == NORMALIZATION){
- forward_normalization_layer(l, state);
- } else if(l.type == BATCHNORM){
- forward_batchnorm_layer(l, state);
- } else if(l.type == DETECTION){
- forward_detection_layer(l, state);
- } else if(l.type == REGION){
- forward_region_layer(l, state);
- } else if(l.type == CONNECTED){
- forward_connected_layer(l, state);
- } else if(l.type == RNN){
- forward_rnn_layer(l, state);
- } else if(l.type == GRU){
- forward_gru_layer(l, state);
- } else if(l.type == CRNN){
- forward_crnn_layer(l, state);
- } else if(l.type == CROP){
- forward_crop_layer(l, state);
- } else if(l.type == COST){
- forward_cost_layer(l, state);
- } else if(l.type == SOFTMAX){
- forward_softmax_layer(l, state);
- } else if(l.type == MAXPOOL){
- forward_maxpool_layer(l, state);
- } else if(l.type == REORG){
- forward_reorg_layer(l, state);
- } else if(l.type == AVGPOOL){
- forward_avgpool_layer(l, state);
- } else if(l.type == DROPOUT){
- forward_dropout_layer(l, state);
- } else if(l.type == ROUTE){
- forward_route_layer(l, net);
- } else if(l.type == SHORTCUT){
- forward_shortcut_layer(l, state);
- }
+ l.forward(l, state);
state.input = l.output;
}
}
@@ -207,29 +164,17 @@
float rate = get_current_rate(net);
for(i = 0; i < net.n; ++i){
layer l = net.layers[i];
- if(l.type == CONVOLUTIONAL){
- update_convolutional_layer(l, update_batch, rate, net.momentum, net.decay);
- } else if(l.type == DECONVOLUTIONAL){
- update_deconvolutional_layer(l, rate, net.momentum, net.decay);
- } else if(l.type == CONNECTED){
- update_connected_layer(l, update_batch, rate, net.momentum, net.decay);
- } else if(l.type == RNN){
- update_rnn_layer(l, update_batch, rate, net.momentum, net.decay);
- } else if(l.type == GRU){
- update_gru_layer(l, update_batch, rate, net.momentum, net.decay);
- } else if(l.type == CRNN){
- update_crnn_layer(l, update_batch, rate, net.momentum, net.decay);
- } else if(l.type == LOCAL){
- update_local_layer(l, update_batch, rate, net.momentum, net.decay);
+ if(l.update){
+ l.update(l, update_batch, rate, net.momentum, net.decay);
}
}
}
float *get_network_output(network net)
{
- #ifdef GPU
- if (gpu_index >= 0) return get_network_output_gpu(net);
- #endif
+#ifdef GPU
+ if (gpu_index >= 0) return get_network_output_gpu(net);
+#endif
int i;
for(i = net.n-1; i > 0; --i) if(net.layers[i].type != COST) break;
return net.layers[i].output;
@@ -273,47 +218,7 @@
state.delta = prev.delta;
}
layer l = net.layers[i];
- if(l.type == CONVOLUTIONAL){
- backward_convolutional_layer(l, state);
- } else if(l.type == DECONVOLUTIONAL){
- backward_deconvolutional_layer(l, state);
- } else if(l.type == ACTIVE){
- backward_activation_layer(l, state);
- } else if(l.type == NORMALIZATION){
- backward_normalization_layer(l, state);
- } else if(l.type == BATCHNORM){
- backward_batchnorm_layer(l, state);
- } else if(l.type == MAXPOOL){
- if(i != 0) backward_maxpool_layer(l, state);
- } else if(l.type == REORG){
- backward_reorg_layer(l, state);
- } else if(l.type == AVGPOOL){
- backward_avgpool_layer(l, state);
- } else if(l.type == DROPOUT){
- backward_dropout_layer(l, state);
- } else if(l.type == DETECTION){
- backward_detection_layer(l, state);
- } else if(l.type == REGION){
- backward_region_layer(l, state);
- } else if(l.type == SOFTMAX){
- if(i != 0) backward_softmax_layer(l, state);
- } else if(l.type == CONNECTED){
- backward_connected_layer(l, state);
- } else if(l.type == RNN){
- backward_rnn_layer(l, state);
- } else if(l.type == GRU){
- backward_gru_layer(l, state);
- } else if(l.type == CRNN){
- backward_crnn_layer(l, state);
- } else if(l.type == LOCAL){
- backward_local_layer(l, state);
- } else if(l.type == COST){
- backward_cost_layer(l, state);
- } else if(l.type == ROUTE){
- backward_route_layer(l, net);
- } else if(l.type == SHORTCUT){
- backward_shortcut_layer(l, state);
- }
+ l.backward(l, state);
}
}
@@ -406,11 +311,11 @@
int i;
for(i = 0; i < net->n; ++i){
net->layers[i].batch = b;
- #ifdef CUDNN
+#ifdef CUDNN
if(net->layers[i].type == CONVOLUTIONAL){
cudnn_convolutional_setup(net->layers + i);
}
- #endif
+#endif
}
}
--
Gitblit v1.10.0