From 481b57a96a9ef29b112caec1bb3e17ffb043ceae Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Sun, 25 Sep 2016 06:12:54 +0000
Subject: [PATCH] So I have this new programming paradigm.......

---
 src/softmax_layer.c |   50 +++++++++++++++++++++++++++++---------------------
 1 files changed, 29 insertions(+), 21 deletions(-)

diff --git a/src/softmax_layer.c b/src/softmax_layer.c
index e344d16..20bc07f 100644
--- a/src/softmax_layer.c
+++ b/src/softmax_layer.c
@@ -7,24 +7,32 @@
 #include <stdio.h>
 #include <assert.h>
 
-softmax_layer *make_softmax_layer(int batch, int inputs, int groups)
+softmax_layer make_softmax_layer(int batch, int inputs, int groups)
 {
     assert(inputs%groups == 0);
     fprintf(stderr, "Softmax Layer: %d inputs\n", inputs);
-    softmax_layer *layer = calloc(1, sizeof(softmax_layer));
-    layer->batch = batch;
-    layer->groups = groups;
-    layer->inputs = inputs;
-    layer->output = calloc(inputs*batch, sizeof(float));
-    layer->delta = calloc(inputs*batch, sizeof(float));
+    softmax_layer l = {0};
+    l.type = SOFTMAX;
+    l.batch = batch;
+    l.groups = groups;
+    l.inputs = inputs;
+    l.outputs = inputs;
+    l.output = calloc(inputs*batch, sizeof(float));
+    l.delta = calloc(inputs*batch, sizeof(float));
+
+    l.forward = forward_softmax_layer;
+    l.backward = backward_softmax_layer;
     #ifdef GPU
-    layer->output_gpu = cuda_make_array(layer->output, inputs*batch); 
-    layer->delta_gpu = cuda_make_array(layer->delta, inputs*batch); 
+    l.forward_gpu = forward_softmax_layer_gpu;
+    l.backward_gpu = backward_softmax_layer_gpu;
+
+    l.output_gpu = cuda_make_array(l.output, inputs*batch); 
+    l.delta_gpu = cuda_make_array(l.delta, inputs*batch); 
     #endif
-    return layer;
+    return l;
 }
 
-void softmax_array(float *input, int n, float *output)
+void softmax_array(float *input, int n, float temp, float *output)
 {
     int i;
     float sum = 0;
@@ -33,30 +41,30 @@
         if(input[i] > largest) largest = input[i];
     }
     for(i = 0; i < n; ++i){
-        sum += exp(input[i]-largest);
+        sum += exp(input[i]/temp-largest/temp);
     }
-    if(sum) sum = largest+log(sum);
+    if(sum) sum = largest/temp+log(sum);
     else sum = largest-100;
     for(i = 0; i < n; ++i){
-        output[i] = exp(input[i]-sum);
+        output[i] = exp(input[i]/temp-sum);
     }
 }
 
-void forward_softmax_layer(const softmax_layer layer, network_state state)
+void forward_softmax_layer(const softmax_layer l, network_state state)
 {
     int b;
-    int inputs = layer.inputs / layer.groups;
-    int batch = layer.batch * layer.groups;
+    int inputs = l.inputs / l.groups;
+    int batch = l.batch * l.groups;
     for(b = 0; b < batch; ++b){
-        softmax_array(state.input+b*inputs, inputs, layer.output+b*inputs);
+        softmax_array(state.input+b*inputs, inputs, l.temperature, l.output+b*inputs);
     }
 }
 
-void backward_softmax_layer(const softmax_layer layer, network_state state)
+void backward_softmax_layer(const softmax_layer l, network_state state)
 {
     int i;
-    for(i = 0; i < layer.inputs*layer.batch; ++i){
-        state.delta[i] = layer.delta[i];
+    for(i = 0; i < l.inputs*l.batch; ++i){
+        state.delta[i] += l.delta[i];
     }
 }
 

--
Gitblit v1.10.0