From 48586c8d4db5c00d3d4b9dabcc9a5d2294c5b15d Mon Sep 17 00:00:00 2001
From: AlexeyAB <alexeyab84@gmail.com>
Date: Sun, 04 Mar 2018 15:15:56 +0000
Subject: [PATCH] Compile fix

---
 src/yolo_v2_class.cpp |   88 ++++++++++++++++++++++++++++++++-----------
 1 files changed, 65 insertions(+), 23 deletions(-)

diff --git a/src/yolo_v2_class.cpp b/src/yolo_v2_class.cpp
index 31f623c..8ef5e93 100644
--- a/src/yolo_v2_class.cpp
+++ b/src/yolo_v2_class.cpp
@@ -29,11 +29,13 @@
 	image images[FRAMES];
 	float *avg;
 	float *predictions[FRAMES];
+	int demo_index;
+	unsigned int *track_id;
 };
 
-
-YOLODLL_API Detector::Detector(std::string cfg_filename, std::string weight_filename, int gpu_id)
+YOLODLL_API Detector::Detector(std::string cfg_filename, std::string weight_filename, int gpu_id) : cur_gpu_id(gpu_id)
 {
+	wait_stream = 0;
 	int old_gpu_index;
 #ifdef GPU
 	cudaGetDevice(&old_gpu_index);
@@ -52,7 +54,7 @@
 	char *cfgfile = const_cast<char *>(cfg_filename.data());
 	char *weightfile = const_cast<char *>(weight_filename.data());
 
-	net = parse_network_cfg(cfgfile);
+	net = parse_network_cfg_custom(cfgfile, 1);
 	if (weightfile) {
 		load_weights(&net, weightfile);
 	}
@@ -70,6 +72,9 @@
 	detector_gpu.probs = (float **)calloc(l.w*l.h*l.n, sizeof(float *));
 	for (j = 0; j < l.w*l.h*l.n; ++j) detector_gpu.probs[j] = (float *)calloc(l.classes, sizeof(float));
 
+	detector_gpu.track_id = (unsigned int *)calloc(l.classes, sizeof(unsigned int));
+	for (j = 0; j < l.classes; ++j) detector_gpu.track_id[j] = 1;
+
 #ifdef GPU
 	cudaSetDevice(old_gpu_index);
 #endif
@@ -81,6 +86,8 @@
 	detector_gpu_t &detector_gpu = *reinterpret_cast<detector_gpu_t *>(detector_gpu_ptr.get());
 	layer l = detector_gpu.net.layers[detector_gpu.net.n - 1];
 
+	free(detector_gpu.track_id);
+
 	free(detector_gpu.avg);
 	for (int j = 0; j < FRAMES; ++j) free(detector_gpu.predictions[j]);
 	for (int j = 0; j < FRAMES; ++j) if(detector_gpu.images[j].data) free(detector_gpu.images[j].data);
@@ -102,12 +109,21 @@
 #endif
 }
 
+YOLODLL_API int Detector::get_net_width() const {
+	detector_gpu_t &detector_gpu = *reinterpret_cast<detector_gpu_t *>(detector_gpu_ptr.get());
+	return detector_gpu.net.w;
+}
+YOLODLL_API int Detector::get_net_height() const {
+	detector_gpu_t &detector_gpu = *reinterpret_cast<detector_gpu_t *>(detector_gpu_ptr.get());
+	return detector_gpu.net.h;
+}
 
-YOLODLL_API std::vector<bbox_t> Detector::detect(std::string image_filename, float thresh)
+
+YOLODLL_API std::vector<bbox_t> Detector::detect(std::string image_filename, float thresh, bool use_mean)
 {
 	std::shared_ptr<image_t> image_ptr(new image_t, [](image_t *img) { if (img->data) free(img->data); delete img; });
 	*image_ptr = load_image(image_filename);
-	return detect(*image_ptr, thresh);
+	return detect(*image_ptr, thresh, use_mean);
 }
 
 static image load_image_stb(char *filename, int channels)
@@ -154,15 +170,17 @@
 	}
 }
 
-YOLODLL_API std::vector<bbox_t> Detector::detect(image_t img, float thresh)
+YOLODLL_API std::vector<bbox_t> Detector::detect(image_t img, float thresh, bool use_mean)
 {
-
 	detector_gpu_t &detector_gpu = *reinterpret_cast<detector_gpu_t *>(detector_gpu_ptr.get());
 	network &net = detector_gpu.net;
 	int old_gpu_index;
 #ifdef GPU
 	cudaGetDevice(&old_gpu_index);
-	cudaSetDevice(net.gpu_index);
+	if(cur_gpu_id != old_gpu_index)
+		cudaSetDevice(net.gpu_index);
+
+	net.wait_stream = wait_stream;	// 1 - wait CUDA-stream, 0 - not to wait
 #endif
 	//std::cout << "net.gpu_index = " << net.gpu_index << std::endl;
 
@@ -174,12 +192,27 @@
 	im.h = img.h;
 	im.w = img.w;
 
-	image sized = resize_image(im, net.w, net.h);
+	image sized;
+	
+	if (net.w == im.w && net.h == im.h) {
+		sized = make_image(im.w, im.h, im.c);
+		memcpy(sized.data, im.data, im.w*im.h*im.c * sizeof(float));
+	}
+	else
+		sized = resize_image(im, net.w, net.h);
+
 	layer l = net.layers[net.n - 1];
 
 	float *X = sized.data;
 
-	network_predict(net, X);
+	float *prediction = network_predict(net, X);
+
+	if (use_mean) {
+		memcpy(detector_gpu.predictions[detector_gpu.demo_index], prediction, l.outputs * sizeof(float));
+		mean_arrays(detector_gpu.predictions, FRAMES, l.outputs, detector_gpu.avg);
+		l.output = detector_gpu.avg;
+		detector_gpu.demo_index = (detector_gpu.demo_index + 1) % FRAMES;
+	}
 
 	get_region_boxes(l, 1, 1, thresh, detector_gpu.probs, detector_gpu.boxes, 0, 0);
 	if (nms) do_nms_sort(detector_gpu.boxes, detector_gpu.probs, l.w*l.h*l.n, l.classes, nms);
@@ -211,24 +244,25 @@
 		free(sized.data);
 
 #ifdef GPU
-	cudaSetDevice(old_gpu_index);
+	if (cur_gpu_id != old_gpu_index)
+		cudaSetDevice(old_gpu_index);
 #endif
 
 	return bbox_vec;
 }
 
-YOLODLL_API std::vector<bbox_t> Detector::tracking(std::vector<bbox_t> cur_bbox_vec, int const frames_story)
+YOLODLL_API std::vector<bbox_t> Detector::tracking_id(std::vector<bbox_t> cur_bbox_vec, bool const change_history, 
+	int const frames_story, int const max_dist)
 {
+	detector_gpu_t &det_gpu = *reinterpret_cast<detector_gpu_t *>(detector_gpu_ptr.get());
+
 	bool prev_track_id_present = false;
 	for (auto &i : prev_bbox_vec_deque)
 		if (i.size() > 0) prev_track_id_present = true;
 
-	static unsigned int track_id = 1;
-
 	if (!prev_track_id_present) {
-		//track_id = 1;
 		for (size_t i = 0; i < cur_bbox_vec.size(); ++i)
-			cur_bbox_vec[i].track_id = track_id++;
+			cur_bbox_vec[i].track_id = det_gpu.track_id[cur_bbox_vec[i].obj_id]++;
 		prev_bbox_vec_deque.push_front(cur_bbox_vec);
 		if (prev_bbox_vec_deque.size() > frames_story) prev_bbox_vec_deque.pop_back();
 		return cur_bbox_vec;
@@ -242,27 +276,35 @@
 			for (size_t m = 0; m < cur_bbox_vec.size(); ++m) {
 				bbox_t const& k = cur_bbox_vec[m];
 				if (i.obj_id == k.obj_id) {
-					unsigned int cur_dist = sqrt(((float)i.x - k.x)*((float)i.x - k.x) + ((float)i.y - k.y)*((float)i.y - k.y));
-					if (cur_dist < 100 && (k.track_id == 0 || dist_vec[m] > cur_dist)) {
+					float center_x_diff = (float)(i.x + i.w/2) - (float)(k.x + k.w/2);
+					float center_y_diff = (float)(i.y + i.h/2) - (float)(k.y + k.h/2);
+					unsigned int cur_dist = sqrt(center_x_diff*center_x_diff + center_y_diff*center_y_diff);
+					if (cur_dist < max_dist && (k.track_id == 0 || dist_vec[m] > cur_dist)) {
 						dist_vec[m] = cur_dist;
 						cur_index = m;
 					}
 				}
 			}
 
-			bool track_id_absent = !std::any_of(cur_bbox_vec.begin(), cur_bbox_vec.end(), [&](bbox_t const& b) { return b.track_id == i.track_id; });
+			bool track_id_absent = !std::any_of(cur_bbox_vec.begin(), cur_bbox_vec.end(), 
+				[&i](bbox_t const& b) { return b.track_id == i.track_id && b.obj_id == i.obj_id; });
 
-			if (cur_index >= 0 && track_id_absent)
+			if (cur_index >= 0 && track_id_absent){
 				cur_bbox_vec[cur_index].track_id = i.track_id;
+				cur_bbox_vec[cur_index].w = (cur_bbox_vec[cur_index].w + i.w) / 2;
+				cur_bbox_vec[cur_index].h = (cur_bbox_vec[cur_index].h + i.h) / 2;
+			}
 		}
 	}
 
 	for (size_t i = 0; i < cur_bbox_vec.size(); ++i)
 		if (cur_bbox_vec[i].track_id == 0)
-			cur_bbox_vec[i].track_id = track_id++;
+			cur_bbox_vec[i].track_id = det_gpu.track_id[cur_bbox_vec[i].obj_id]++;
 
-	prev_bbox_vec_deque.push_front(cur_bbox_vec);
-	if (prev_bbox_vec_deque.size() > frames_story) prev_bbox_vec_deque.pop_back();
+	if (change_history) {
+		prev_bbox_vec_deque.push_front(cur_bbox_vec);
+		if (prev_bbox_vec_deque.size() > frames_story) prev_bbox_vec_deque.pop_back();
+	}
 
 	return cur_bbox_vec;
 }
\ No newline at end of file

--
Gitblit v1.10.0