From 504ece5b00f192d5c1b343fd06ce1648f9139180 Mon Sep 17 00:00:00 2001
From: Edmond Yoo <hj3yoo@uwaterloo.ca>
Date: Mon, 17 Sep 2018 03:06:19 +0000
Subject: [PATCH] Code cleaning & training new YOLO model

---
 opencv_dnn.py |  357 ++++++++++++++++++++++++++++++++++++++++-------------------
 1 files changed, 243 insertions(+), 114 deletions(-)

diff --git a/opencv_dnn.py b/opencv_dnn.py
index 25d5848..9acdb5c 100644
--- a/opencv_dnn.py
+++ b/opencv_dnn.py
@@ -1,13 +1,118 @@
 import cv2
 import numpy as np
+import pandas as pd
+import imagehash as ih
 import os
 import sys
 import math
-from operator import itemgetter
+import random
+import time
+from PIL import Image
+import fetch_data
+import transform_data
+
+card_width = 315
+card_height = 440
 
 
-# Disclaimer: majority of the basic framework in this file is modified from the following tutorial:
-# https://www.learnopencv.com/deep-learning-based-object-detection-using-yolov3-with-opencv-python-c/
+def calc_image_hashes(card_pool, save_to=None):
+    card_pool['art_hash'] = np.NaN
+    for ind, card_info in card_pool.iterrows():
+        if ind % 100 == 0:
+            print(ind)
+        img_name = '%s/card_img/png/%s/%s_%s.png' % (transform_data.data_dir, card_info['set'],
+                                                     card_info['collector_number'],
+                                                     fetch_data.get_valid_filename(card_info['name']))
+        card_img = cv2.imread(img_name)
+        if card_img is None:
+            fetch_data.fetch_card_image(card_info,
+                                        out_dir='%s/card_img/png/%s' % (transform_data.data_dir, card_info['set']))
+            card_img = cv2.imread(img_name)
+        if card_img is None:
+            print('WARNING: card %s is not found!' % img_name)
+        img_art = Image.fromarray(card_img[121:580, 63:685])  # For 745*1040 size card image
+        art_hash = ih.phash(img_art, hash_size=32, highfreq_factor=4)
+        card_pool.at[ind, 'art_hash'] = art_hash
+        img_card = Image.fromarray(card_img)
+        card_hash = ih.phash(img_card, hash_size=32, highfreq_factor=4)
+        card_pool.at[ind, 'card_hash'] = card_hash
+        card_pool = card_pool[['artist', 'border_color', 'collector_number', 'color_identity', 'colors', 'flavor_text',
+                               'image_uris', 'mana_cost', 'legalities', 'name', 'oracle_text', 'rarity', 'type_line',
+                               'set', 'set_name', 'power', 'toughness', 'art_hash', 'card_hash']]
+    if save_to is not None:
+        card_pool.to_pickle(save_to)
+    return card_pool
+
+
+# www.pyimagesearch.com/2014/08/25/4-point-opencv-getperspective-transform-example/
+def order_points(pts):
+    # initialzie a list of coordinates that will be ordered
+    # such that the first entry in the list is the top-left,
+    # the second entry is the top-right, the third is the
+    # bottom-right, and the fourth is the bottom-left
+    rect = np.zeros((4, 2), dtype="float32")
+
+    # the top-left point will have the smallest sum, whereas
+    # the bottom-right point will have the largest sum
+    s = pts.sum(axis=1)
+    rect[0] = pts[np.argmin(s)]
+    rect[2] = pts[np.argmax(s)]
+
+    # now, compute the difference between the points, the
+    # top-right point will have the smallest difference,
+    # whereas the bottom-left will have the largest difference
+    diff = np.diff(pts, axis=1)
+    rect[1] = pts[np.argmin(diff)]
+    rect[3] = pts[np.argmax(diff)]
+
+    # return the ordered coordinates
+    return rect
+
+
+# www.pyimagesearch.com/2014/08/25/4-point-opencv-getperspective-transform-example/
+def four_point_transform(image, pts):
+    # obtain a consistent order of the points and unpack them
+    # individually
+    rect = order_points(pts)
+    (tl, tr, br, bl) = rect
+
+    # compute the width of the new image, which will be the
+    # maximum distance between bottom-right and bottom-left
+    # x-coordiates or the top-right and top-left x-coordinates
+    widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2))
+    widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2))
+    maxWidth = max(int(widthA), int(widthB))
+
+    # compute the height of the new image, which will be the
+    # maximum distance between the top-right and bottom-right
+    # y-coordinates or the top-left and bottom-left y-coordinates
+    heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2))
+    heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2))
+    maxHeight = max(int(heightA), int(heightB))
+
+    # now that we have the dimensions of the new image, construct
+    # the set of destination points to obtain a "birds eye view",
+    # (i.e. top-down view) of the image, again specifying points
+    # in the top-left, top-right, bottom-right, and bottom-left
+    # order
+    dst = np.array([
+        [0, 0],
+        [maxWidth - 1, 0],
+        [maxWidth - 1, maxHeight - 1],
+        [0, maxHeight - 1]], dtype="float32")
+
+    # compute the perspective transform matrix and then apply it
+    mat = cv2.getPerspectiveTransform(rect, dst)
+    warped = cv2.warpPerspective(image, mat, (maxWidth, maxHeight))
+
+    # If the image is horizontally long, rotate it by 90
+    if maxWidth > maxHeight:
+        center = (maxHeight / 2, maxHeight / 2)
+        mat_rot = cv2.getRotationMatrix2D(center, 270, 1.0)
+        warped = cv2.warpAffine(warped, mat_rot, (maxHeight, maxWidth))
+
+    # return the warped image
+    return warped
 
 
 # Get the names of the output layers
@@ -19,6 +124,7 @@
 
 
 # Remove the bounding boxes with low confidence using non-maxima suppression
+# https://www.learnopencv.com/deep-learning-based-object-detection-using-yolov3-with-opencv-python-c/
 def post_process(frame, outs, thresh_conf, thresh_nms):
     frame_height = frame.shape[0]
     frame_width = frame.shape[1]
@@ -34,6 +140,7 @@
             class_id = np.argmax(scores)
             confidence = scores[class_id]
             if confidence > thresh_conf:
+                #print(detection[0:3])
                 center_x = int(detection[0] * frame_width)
                 center_y = int(detection[1] * frame_height)
                 width = int(detection[2] * frame_width)
@@ -86,7 +193,7 @@
     # Set all brightness values, where the pixels are still saturated to 0.
     v[non_sat == 0] = 0
     # filter out very bright pixels.
-    glare = (v > 240) * 255
+    glare = (v > 200) * 255
 
     # Slightly increase the area for each pixel
     glare = cv2.dilate(glare.astype(np.uint8), disk)
@@ -96,76 +203,42 @@
     return corrected
 
 
-def find_card(img, thresh_val=80, blur_radius=None, dilate_radius=None, min_hyst=80, max_hyst=200, min_line_length=None, max_line_gap=None, debug=False):
-    # Default values
-    if blur_radius is None:
-        blur_radius = math.floor(min(img.shape[:2]) / 100 + 0.5) // 2 * 2 + 1  # Rounded to the nearest odd
-    if dilate_radius is None:
-        dilate_radius = math.floor(min(img.shape[:2]) / 67 + 0.5)
-    if min_line_length is None:
-        min_line_length = min(img.shape[:2]) / 3
-    if max_line_gap is None:
-        max_line_gap = min(img.shape[:2]) / 10
-
-    thresh_radius = math.floor(min(img.shape[:2]) / 50 + 0.5) // 2 * 2 + 1  # Rounded to the nearest odd
-
-    print(blur_radius, dilate_radius, thresh_radius, min_line_length, max_line_gap)
-    '''
-    blur_radius = 3
-    dilate_radius = 3
-    thresh_radius = 3
-    min_line_length = 5
-    max_line_gap = 5
-    '''
-
+def find_card(img, thresh_c=5, kernel_size=(3, 3), size_ratio=0.2):
+    # Typical pre-processing - grayscale, blurring, thresholding
     img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
-    # Median blur better removes background textures than Gaussian blur
-    img_blur = cv2.medianBlur(img_gray, blur_radius)
-    # Truncate the bright area while detecting the border
-    img_thresh = cv2.adaptiveThreshold(img_blur, 128, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, thresh_radius, 5)
-    # _, img_thresh = cv2.threshold(img_blur, thresh_val, 255, cv2.THRESH_TRUNC)
+    img_blur = cv2.medianBlur(img_gray, 5)
+    img_thresh = cv2.adaptiveThreshold(img_blur, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 5, thresh_c)
 
-    # Dilate the image to emphasize thick borders around the card
-    kernel_dilate = np.ones((dilate_radius, dilate_radius), np.uint8)
-    img_dilate = cv2.dilate(img_thresh, kernel_dilate, iterations=1)
-    img_dilate = cv2.erode(img_dilate, kernel_dilate, iterations=1)
+    # Dilute the image, then erode them to remove minor noises
+    kernel = np.ones(kernel_size, np.uint8)
+    img_dilate = cv2.dilate(img_thresh, kernel, iterations=1)
+    img_erode = cv2.erode(img_dilate, kernel, iterations=1)
 
-    img_contour = img_dilate.copy()
-    _, contours, _ = cv2.findContours(img_contour, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
-    img_contour = cv2.cvtColor(img_contour, cv2.COLOR_GRAY2BGR)
-    img_contour = cv2.drawContours(img_contour, contours, -1, (128, 0, 0), 1)
+    # Find the contour
+    #img_contour = img_erode.copy()
+    _, cnts, hier = cv2.findContours(img_erode, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
+    if len(cnts) == 0:
+        print('no contours')
+        return []
+    #img_contour = cv2.cvtColor(img_contour, cv2.COLOR_GRAY2BGR)
+    #img_contour = cv2.drawContours(img_contour, cnts, -1, (0, 255, 0), 1)
+    #cv2.imshow('test', img_contour)
 
-    # find the biggest area
-    c = max(contours, key=cv2.contourArea)
+    # For each contours detected, check if they are large enough and are rectangle
+    cnts_rect = []
+    ind_sort = sorted(range(len(cnts)), key=lambda i: cv2.contourArea(cnts[i]), reverse=True)
+    for i in range(len(cnts)):
+        size = cv2.contourArea(cnts[ind_sort[i]])
+        peri = cv2.arcLength(cnts[ind_sort[i]], True)
+        approx = cv2.approxPolyDP(cnts[ind_sort[i]], 0.04 * peri, True)
+        if size > img.shape[0] * img.shape[1] * size_ratio and len(approx) == 4:
+            cnts_rect.append(approx)
 
-    x, y, w, h = cv2.boundingRect(c)
-    # draw the book contour (in green)
-    img_contour = cv2.drawContours(img_contour, [c], -1, (0, 255, 0), 1)
-
-    # Canny edge - low minimum hysteresis to detect glowed area,
-    # and high maximum hysteresis to compensate for high false positives.
-    img_canny = cv2.Canny(img_dilate, min_hyst, max_hyst)
-
-    detected_lines = cv2.HoughLinesP(img_dilate, 1, np.pi / 180, threshold=300,
-                                     minLineLength=min_line_length,
-                                     maxLineGap=max_line_gap)
-    card_found = detected_lines is not None
-    if card_found:
-        print(len(detected_lines))
-
-    img_hough = cv2.cvtColor(img_canny.copy(), cv2.COLOR_GRAY2BGR)
-    if card_found:
-        for line in detected_lines:
-            x1, y1, x2, y2 = line[0]
-            cv2.line(img_hough, (x1, y1), (x2, y2), (0, 0, 255), 1)
-
-    img_thresh = cv2.cvtColor(img_thresh, cv2.COLOR_GRAY2BGR)
-    img_dilate = cv2.cvtColor(img_dilate, cv2.COLOR_GRAY2BGR)
-    #img_canny = cv2.cvtColor(img_canny, cv2.COLOR_GRAY2BGR)
-    return img_thresh, img_dilate, img_contour, img_hough
+    return cnts_rect
 
 
-def detect_frame(net, classes, img, thresh_conf=0.5, thresh_nms=0.4, in_dim=(416, 416), display=True, out_path=None):
+def detect_frame(net, classes, img, thresh_conf=0.1, thresh_nms=0.4, in_dim=(416, 416), out_path=None, display=True,
+                 debug=False):
     img_copy = img.copy()
     # Create a 4D blob from a frame.
     blob = cv2.dnn.blobFromImage(img, 1 / 255, in_dim, [0, 0, 0], 1, crop=False)
@@ -176,74 +249,107 @@
     # Runs the forward pass to get output of the output layers
     outs = net.forward(get_outputs_names(net))
 
+    img_result = img.copy()
+
     # Remove the bounding boxes with low confidence
     obj_list = post_process(img, outs, thresh_conf, thresh_nms)
     for obj in obj_list:
         class_id, confidence, box = obj
         left, top, width, height = box
-        draw_pred(img, class_id, classes, confidence, left, top, left + width, top + height)
+        draw_pred(img_result, class_id, classes, confidence, left, top, left + width, top + height)
 
     # Put efficiency information. The function getPerfProfile returns the
     # overall time for inference(t) and the timings for each of the layers(in layersTimes)
-    t, _ = net.getPerfProfile()
-    label = 'Inference time: %.2f ms' % (t * 1000.0 / cv2.getTickFrequency())
-    cv2.putText(img, label, (0, 15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255))
+    #if display:
+    #    t, _ = net.getPerfProfile()
+    #    label = 'Inference time: %.2f ms' % (t * 1000.0 / cv2.getTickFrequency())
+    #    cv2.putText(img_result, label, (0, 15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255))
+
+    '''
+    Assuming that the model has properly identified all cards, there should be 1 card that can be classified per
+    bounding box. Find the largest rectangular contour from the region of interest, and identify the card by  
+    comparing the perceptual hashing of the image with the other cards' image from the database.
+    '''
+    card_name_list = []
+    for i in range(len(obj_list)):
+        _, _, box = obj_list[i]
+        left, top, width, height = box
+        # Just in case the bounding box trimmed the edge of the cards, give it a bit of offset around the edge
+        offset_ratio = 0.1
+        x1 = max(0, int(left - offset_ratio * width))
+        x2 = min(img.shape[1], int(left + (1 + offset_ratio) * width))
+        y1 = max(0, int(top - offset_ratio * height))
+        y2 = min(img.shape[0], int(top + (1 + offset_ratio) * height))
+        img_snip = img[y1:y2, x1:x2]
+        cnts = find_card(img_snip)
+        if len(cnts) > 0:
+            cnt = cnts[0]  # The largest (rectangular) contour
+            pts = np.float32([p[0] for p in cnt])
+            img_warp = four_point_transform(img_snip, pts)
+            img_warp = cv2.resize(img_warp, (card_width, card_height))
+            '''
+            img_art = img_warp[47:249, 22:294]
+            img_art = Image.fromarray(img_art.astype('uint8'), 'RGB')
+            art_hash = ih.phash(img_art, hash_size=32, highfreq_factor=4)
+            card_pool['hash_diff'] = card_pool['art_hash'] - art_hash
+            min_cards = card_pool[card_pool['hash_diff'] == min(card_pool['hash_diff'])]
+            card_name = min_cards.iloc[0]['name']
+            '''
+            img_card = Image.fromarray(img_warp.astype('uint8'), 'RGB')
+            card_hash = ih.phash(img_card, hash_size=32, highfreq_factor=4)
+            card_pool['hash_diff'] = card_pool['card_hash'] - card_hash
+            min_cards = card_pool[card_pool['hash_diff'] == min(card_pool['hash_diff'])]
+            card_name = min_cards.iloc[0]['name']
+            card_name_list.append(card_name)
+            hash_diff = min_cards.iloc[0]['hash_diff']
+
+            # Display the result
+            if debug:
+                # cv2.rectangle(img_warp, (22, 47), (294, 249), (0, 255, 0), 2)
+                cv2.putText(img_warp, card_name + ', ' + str(hash_diff), (0, 50),
+                            cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)
+            cv2.putText(img_result, card_name , (x1, y1), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2)
+            if debug:
+                cv2.imshow('card#%d' % i, img_warp)
+        elif debug:
+            cv2.imshow('card#%d' % i, np.zeros((1, 1), dtype=np.uint8))
 
     if out_path is not None:
-        cv2.imwrite(out_path, img.astype(np.uint8))
-    if display:
-        no_glare = remove_glare(img_copy)
-        img_concat = np.concatenate((img, no_glare), axis=1)
-        cv2.imshow('result', img_concat)
-        for i in range(len(obj_list)):
-            class_id, confidence, box = obj_list[i]
-            left, top, width, height = box
-            img_snip = img_copy[max(0, top):min(img.shape[0], top + height),
-                                max(0, left):min(img.shape[1], left + width)]
-            img_thresh, img_dilate, img_canny, img_hough = find_card(img_snip)
-            img_concat = np.concatenate((img_snip, img_thresh, img_dilate, img_canny, img_hough), axis=1)
-            cv2.imshow('feature#%d' % i, img_concat)
-        cv2.waitKey(0)
-        cv2.destroyAllWindows()
+        cv2.imwrite(out_path, img_result.astype(np.uint8))
 
-    return obj_list
+    return obj_list, card_name_list, img_result
 
 
-def detect_video(net, classes, capture, thresh_conf=0.5, thresh_nms=0.4, in_dim=(416, 416), display=True, out_path=None):
+def detect_video(net, classes, capture, thresh_conf=0.5, thresh_nms=0.4, in_dim=(416, 416), out_path=None, display=True,
+                 debug=False):
     if out_path is not None:
         vid_writer = cv2.VideoWriter(out_path, cv2.VideoWriter_fourcc('M', 'J', 'P', 'G'), 30,
                                      (round(capture.get(cv2.CAP_PROP_FRAME_WIDTH)),
                                       round(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))))
     max_num_obj = 0
     while True:
+        start_time = time.time()
         ret, frame = capture.read()
         if not ret:
             # End of video
             print("End of video. Press any key to exit")
             cv2.waitKey(0)
             break
-        img = frame.copy()
-        obj_list = detect_frame(net, classes, frame, thresh_conf=thresh_conf, thresh_nms=thresh_nms, in_dim=in_dim,
-                                display=False, out_path=None)
-        max_num_obj = max(max_num_obj, len(obj_list))
-        if display:
-            no_glare = remove_glare(img)
-            img_concat = np.concatenate((frame, no_glare), axis=1)
-            cv2.imshow('result', img_concat)
-            for i in range(len(obj_list)):
-                class_id, confidence, box = obj_list[i]
-                left, top, width, height = box
-                img_snip = img[max(0, top):min(img.shape[0], top + height),
-                           max(0, left):min(img.shape[1], left + width)]
-                img_thresh, img_dilate, img_canny, img_hough = find_card(img_snip)
-                img_concat = np.concatenate((img_snip, img_thresh, img_dilate, img_canny, img_hough), axis=1)
-                cv2.imshow('feature#%d' % i, img_concat)
+        # Use the YOLO model to identify each cards annonymously
+        obj_list, card_name_list, img_result = detect_frame(net, classes, frame, thresh_conf=thresh_conf,
+                                                            thresh_nms=thresh_nms, in_dim=in_dim, out_path=None,
+                                                            display=display, debug=debug)
+        if debug:
+            max_num_obj = max(max_num_obj, len(obj_list))
             for i in range(len(obj_list), max_num_obj):
-                cv2.imshow('feature#%d' % i, np.zeros((1, 1), dtype=np.uint8))
-            if len(obj_list) > 0:
-                cv2.waitKey(0)
+                cv2.imshow('card#%d' % i, np.zeros((1, 1), dtype=np.uint8))
+        if display:
+            cv2.imshow('result', img_result)
+
+        elapsed_ms = (time.time() - start_time) * 1000
+        print('Elapsed time: %.2f ms' % elapsed_ms)
         if out_path is not None:
-            vid_writer.write(frame.astype(np.uint8))
+            vid_writer.write(img_result.astype(np.uint8))
         cv2.waitKey(1)
 
     if out_path is not None:
@@ -253,10 +359,13 @@
 
 def main():
     # Specify paths for all necessary files
-    test_path = os.path.abspath('../data/test1.jpg')
+    test_path = os.path.abspath('test_file/test4.mp4')
+    #weight_path = 'backup/tiny_yolo_10_39500.weights'
+    #cfg_path = 'cfg/tiny_yolo_10.cfg'
+    #class_path = "data/obj_10.names"
     weight_path = 'weights/second_general/tiny_yolo_final.weights'
-    cfg_path = 'cfg/tiny_yolo.cfg'
-    class_path = "data/obj.names"
+    cfg_path = 'cfg/tiny_yolo_old.cfg'
+    class_path = 'data/obj.names'
     out_dir = 'out'
     if not os.path.isfile(test_path):
         print('The test file %s doesn\'t exist!' % os.path.abspath(test_path))
@@ -271,6 +380,9 @@
         print('The class file %s doesn\'t exist!' % os.path.abspath(test_path))
         return
 
+    thresh_conf = 0.01
+    thresh_nms = 0.8
+
     # Setup
     # Read class names from text file
     with open(class_path, 'r') as f:
@@ -290,13 +402,30 @@
 
     if test_ext in ['jpg', 'jpeg', 'bmp', 'png', 'tiff']:
         img = cv2.imread(test_path)
-        detect_frame(net, classes, img, out_path=out_path)
+        detect_frame(net, classes, img, out_path=out_path, thresh_conf=thresh_conf, thresh_nms=thresh_nms)
     else:
-        capture = cv2.VideoCapture(test_path)
-        detect_video(net, classes, capture, out_path=out_path)
+        capture = cv2.VideoCapture(0)
+        detect_video(net, classes, capture, out_path=out_path, thresh_conf=thresh_conf, thresh_nms=thresh_nms,
+                     display=False, debug=False)
         capture.release()
     pass
 
 
 if __name__ == '__main__':
+    '''
+    df_list = []
+    for set_name in fetch_data.all_set_list:
+        csv_name = '%s/csv/%s.csv' % (transform_data.data_dir, set_name)
+        df = fetch_data.load_all_cards_text(csv_name)
+        df_list.append(df)
+        #print(df)
+    card_pool = pd.concat(df_list)
+    card_pool.reset_index(drop=True, inplace=True)
+    card_pool.drop('Unnamed: 0', axis=1, inplace=True, errors='ignore')
+    card_pool = calc_image_hashes(card_pool, save_to='card_pool.pck')
+    '''
+    # csv_name = '%s/csv/%s.csv' % (transform_data.data_dir, 'rtr')
+    # card_pool = fetch_data.load_all_cards_text(csv_name)
+    # card_pool = calc_image_hashes(card_pool)
+    card_pool = pd.read_pickle('card_pool.pck')
     main()

--
Gitblit v1.10.0