From 516f019ba6fb88de7218dd3b4eaeadb1cf676518 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Mon, 11 May 2015 20:46:49 +0000
Subject: [PATCH] route handles input images well....ish
---
src/detection_layer.c | 210 ++++++++++++++++++++++++++--------------------------
1 files changed, 106 insertions(+), 104 deletions(-)
diff --git a/src/detection_layer.c b/src/detection_layer.c
index 831439e..395146b 100644
--- a/src/detection_layer.c
+++ b/src/detection_layer.c
@@ -8,47 +8,49 @@
#include <string.h>
#include <stdlib.h>
-int get_detection_layer_locations(detection_layer layer)
+int get_detection_layer_locations(detection_layer l)
{
- return layer.inputs / (layer.classes+layer.coords+layer.rescore+layer.background);
+ return l.inputs / (l.classes+l.coords+l.rescore+l.background);
}
-int get_detection_layer_output_size(detection_layer layer)
+int get_detection_layer_output_size(detection_layer l)
{
- return get_detection_layer_locations(layer)*(layer.background + layer.classes + layer.coords);
+ return get_detection_layer_locations(l)*(l.background + l.classes + l.coords);
}
-detection_layer *make_detection_layer(int batch, int inputs, int classes, int coords, int rescore, int background, int nuisance)
+detection_layer make_detection_layer(int batch, int inputs, int classes, int coords, int rescore, int background, int nuisance)
{
- detection_layer *layer = calloc(1, sizeof(detection_layer));
+ detection_layer l = {0};
+ l.type = DETECTION;
- layer->batch = batch;
- layer->inputs = inputs;
- layer->classes = classes;
- layer->coords = coords;
- layer->rescore = rescore;
- layer->nuisance = nuisance;
- layer->cost = calloc(1, sizeof(float));
- layer->does_cost=1;
- layer->background = background;
- int outputs = get_detection_layer_output_size(*layer);
- layer->output = calloc(batch*outputs, sizeof(float));
- layer->delta = calloc(batch*outputs, sizeof(float));
+ l.batch = batch;
+ l.inputs = inputs;
+ l.classes = classes;
+ l.coords = coords;
+ l.rescore = rescore;
+ l.nuisance = nuisance;
+ l.cost = calloc(1, sizeof(float));
+ l.does_cost=1;
+ l.background = background;
+ int outputs = get_detection_layer_output_size(l);
+ l.outputs = outputs;
+ l.output = calloc(batch*outputs, sizeof(float));
+ l.delta = calloc(batch*outputs, sizeof(float));
#ifdef GPU
- layer->output_gpu = cuda_make_array(0, batch*outputs);
- layer->delta_gpu = cuda_make_array(0, batch*outputs);
+ l.output_gpu = cuda_make_array(0, batch*outputs);
+ l.delta_gpu = cuda_make_array(0, batch*outputs);
#endif
fprintf(stderr, "Detection Layer\n");
srand(0);
- return layer;
+ return l;
}
-void dark_zone(detection_layer layer, int class, int start, network_state state)
+void dark_zone(detection_layer l, int class, int start, network_state state)
{
- int index = start+layer.background+class;
- int size = layer.classes+layer.coords+layer.background;
+ int index = start+l.background+class;
+ int size = l.classes+l.coords+l.background;
int location = (index%(7*7*size)) / size ;
int r = location / 7;
int c = location % 7;
@@ -60,9 +62,9 @@
if((c + dc) > 6 || (c + dc) < 0) continue;
int di = (dr*7 + dc) * size;
if(state.truth[index+di]) continue;
- layer.output[index + di] = 0;
+ l.output[index + di] = 0;
//if(!state.truth[start+di]) continue;
- //layer.output[start + di] = 1;
+ //l.output[start + di] = 1;
}
}
}
@@ -299,47 +301,47 @@
return dd;
}
-void forward_detection_layer(const detection_layer layer, network_state state)
+void forward_detection_layer(const detection_layer l, network_state state)
{
int in_i = 0;
int out_i = 0;
- int locations = get_detection_layer_locations(layer);
+ int locations = get_detection_layer_locations(l);
int i,j;
- for(i = 0; i < layer.batch*locations; ++i){
- int mask = (!state.truth || state.truth[out_i + layer.background + layer.classes + 2]);
+ for(i = 0; i < l.batch*locations; ++i){
+ int mask = (!state.truth || state.truth[out_i + l.background + l.classes + 2]);
float scale = 1;
- if(layer.rescore) scale = state.input[in_i++];
- else if(layer.nuisance){
- layer.output[out_i++] = 1-state.input[in_i++];
+ if(l.rescore) scale = state.input[in_i++];
+ else if(l.nuisance){
+ l.output[out_i++] = 1-state.input[in_i++];
scale = mask;
}
- else if(layer.background) layer.output[out_i++] = scale*state.input[in_i++];
+ else if(l.background) l.output[out_i++] = scale*state.input[in_i++];
- for(j = 0; j < layer.classes; ++j){
- layer.output[out_i++] = scale*state.input[in_i++];
+ for(j = 0; j < l.classes; ++j){
+ l.output[out_i++] = scale*state.input[in_i++];
}
- if(layer.nuisance){
+ if(l.nuisance){
- }else if(layer.background){
- softmax_array(layer.output + out_i - layer.classes-layer.background, layer.classes+layer.background, layer.output + out_i - layer.classes-layer.background);
- activate_array(state.input+in_i, layer.coords, LOGISTIC);
+ }else if(l.background){
+ softmax_array(l.output + out_i - l.classes-l.background, l.classes+l.background, l.output + out_i - l.classes-l.background);
+ activate_array(state.input+in_i, l.coords, LOGISTIC);
}
- for(j = 0; j < layer.coords; ++j){
- layer.output[out_i++] = mask*state.input[in_i++];
+ for(j = 0; j < l.coords; ++j){
+ l.output[out_i++] = mask*state.input[in_i++];
}
}
- if(layer.does_cost && state.train && 0){
+ if(l.does_cost && state.train && 0){
int count = 0;
float avg = 0;
- *(layer.cost) = 0;
- int size = get_detection_layer_output_size(layer) * layer.batch;
- memset(layer.delta, 0, size * sizeof(float));
- for (i = 0; i < layer.batch*locations; ++i) {
- int classes = layer.nuisance+layer.classes;
- int offset = i*(classes+layer.coords);
+ *(l.cost) = 0;
+ int size = get_detection_layer_output_size(l) * l.batch;
+ memset(l.delta, 0, size * sizeof(float));
+ for (i = 0; i < l.batch*locations; ++i) {
+ int classes = l.nuisance+l.classes;
+ int offset = i*(classes+l.coords);
for (j = offset; j < offset+classes; ++j) {
- *(layer.cost) += pow(state.truth[j] - layer.output[j], 2);
- layer.delta[j] = state.truth[j] - layer.output[j];
+ *(l.cost) += pow(state.truth[j] - l.output[j], 2);
+ l.delta[j] = state.truth[j] - l.output[j];
}
box truth;
truth.x = state.truth[j+0];
@@ -347,17 +349,17 @@
truth.w = state.truth[j+2];
truth.h = state.truth[j+3];
box out;
- out.x = layer.output[j+0];
- out.y = layer.output[j+1];
- out.w = layer.output[j+2];
- out.h = layer.output[j+3];
+ out.x = l.output[j+0];
+ out.y = l.output[j+1];
+ out.w = l.output[j+2];
+ out.h = l.output[j+3];
if(!(truth.w*truth.h)) continue;
//printf("iou: %f\n", iou);
dbox d = diou(out, truth);
- layer.delta[j+0] = d.dx;
- layer.delta[j+1] = d.dy;
- layer.delta[j+2] = d.dw;
- layer.delta[j+3] = d.dh;
+ l.delta[j+0] = d.dx;
+ l.delta[j+1] = d.dy;
+ l.delta[j+2] = d.dw;
+ l.delta[j+3] = d.dh;
int sqr = 1;
if(sqr){
@@ -367,7 +369,7 @@
out.h *= out.h;
}
float iou = box_iou(truth, out);
- *(layer.cost) += pow((1-iou), 2);
+ *(l.cost) += pow((1-iou), 2);
avg += iou;
++count;
}
@@ -375,24 +377,24 @@
}
/*
int count = 0;
- for(i = 0; i < layer.batch*locations; ++i){
- for(j = 0; j < layer.classes+layer.background; ++j){
- printf("%f, ", layer.output[count++]);
+ for(i = 0; i < l.batch*locations; ++i){
+ for(j = 0; j < l.classes+l.background; ++j){
+ printf("%f, ", l.output[count++]);
}
printf("\n");
- for(j = 0; j < layer.coords; ++j){
- printf("%f, ", layer.output[count++]);
+ for(j = 0; j < l.coords; ++j){
+ printf("%f, ", l.output[count++]);
}
printf("\n");
}
*/
/*
- if(layer.background || 1){
- for(i = 0; i < layer.batch*locations; ++i){
- int index = i*(layer.classes+layer.coords+layer.background);
- for(j= 0; j < layer.classes; ++j){
- if(state.truth[index+j+layer.background]){
-//dark_zone(layer, j, index, state);
+ if(l.background || 1){
+ for(i = 0; i < l.batch*locations; ++i){
+ int index = i*(l.classes+l.coords+l.background);
+ for(j= 0; j < l.classes; ++j){
+ if(state.truth[index+j+l.background]){
+//dark_zone(l, j, index, state);
}
}
}
@@ -400,66 +402,66 @@
*/
}
-void backward_detection_layer(const detection_layer layer, network_state state)
+void backward_detection_layer(const detection_layer l, network_state state)
{
- int locations = get_detection_layer_locations(layer);
+ int locations = get_detection_layer_locations(l);
int i,j;
int in_i = 0;
int out_i = 0;
- for(i = 0; i < layer.batch*locations; ++i){
+ for(i = 0; i < l.batch*locations; ++i){
float scale = 1;
float latent_delta = 0;
- if(layer.rescore) scale = state.input[in_i++];
- else if (layer.nuisance) state.delta[in_i++] = -layer.delta[out_i++];
- else if (layer.background) state.delta[in_i++] = scale*layer.delta[out_i++];
- for(j = 0; j < layer.classes; ++j){
- latent_delta += state.input[in_i]*layer.delta[out_i];
- state.delta[in_i++] = scale*layer.delta[out_i++];
+ if(l.rescore) scale = state.input[in_i++];
+ else if (l.nuisance) state.delta[in_i++] = -l.delta[out_i++];
+ else if (l.background) state.delta[in_i++] = scale*l.delta[out_i++];
+ for(j = 0; j < l.classes; ++j){
+ latent_delta += state.input[in_i]*l.delta[out_i];
+ state.delta[in_i++] = scale*l.delta[out_i++];
}
- if (layer.nuisance) {
+ if (l.nuisance) {
- }else if (layer.background) gradient_array(layer.output + out_i, layer.coords, LOGISTIC, layer.delta + out_i);
- for(j = 0; j < layer.coords; ++j){
- state.delta[in_i++] = layer.delta[out_i++];
+ }else if (l.background) gradient_array(l.output + out_i, l.coords, LOGISTIC, l.delta + out_i);
+ for(j = 0; j < l.coords; ++j){
+ state.delta[in_i++] = l.delta[out_i++];
}
- if(layer.rescore) state.delta[in_i-layer.coords-layer.classes-layer.rescore-layer.background] = latent_delta;
+ if(l.rescore) state.delta[in_i-l.coords-l.classes-l.rescore-l.background] = latent_delta;
}
}
#ifdef GPU
-void forward_detection_layer_gpu(const detection_layer layer, network_state state)
+void forward_detection_layer_gpu(const detection_layer l, network_state state)
{
- int outputs = get_detection_layer_output_size(layer);
- float *in_cpu = calloc(layer.batch*layer.inputs, sizeof(float));
+ int outputs = get_detection_layer_output_size(l);
+ float *in_cpu = calloc(l.batch*l.inputs, sizeof(float));
float *truth_cpu = 0;
if(state.truth){
- truth_cpu = calloc(layer.batch*outputs, sizeof(float));
- cuda_pull_array(state.truth, truth_cpu, layer.batch*outputs);
+ truth_cpu = calloc(l.batch*outputs, sizeof(float));
+ cuda_pull_array(state.truth, truth_cpu, l.batch*outputs);
}
- cuda_pull_array(state.input, in_cpu, layer.batch*layer.inputs);
+ cuda_pull_array(state.input, in_cpu, l.batch*l.inputs);
network_state cpu_state;
cpu_state.train = state.train;
cpu_state.truth = truth_cpu;
cpu_state.input = in_cpu;
- forward_detection_layer(layer, cpu_state);
- cuda_push_array(layer.output_gpu, layer.output, layer.batch*outputs);
- cuda_push_array(layer.delta_gpu, layer.delta, layer.batch*outputs);
+ forward_detection_layer(l, cpu_state);
+ cuda_push_array(l.output_gpu, l.output, l.batch*outputs);
+ cuda_push_array(l.delta_gpu, l.delta, l.batch*outputs);
free(cpu_state.input);
if(cpu_state.truth) free(cpu_state.truth);
}
-void backward_detection_layer_gpu(detection_layer layer, network_state state)
+void backward_detection_layer_gpu(detection_layer l, network_state state)
{
- int outputs = get_detection_layer_output_size(layer);
+ int outputs = get_detection_layer_output_size(l);
- float *in_cpu = calloc(layer.batch*layer.inputs, sizeof(float));
- float *delta_cpu = calloc(layer.batch*layer.inputs, sizeof(float));
+ float *in_cpu = calloc(l.batch*l.inputs, sizeof(float));
+ float *delta_cpu = calloc(l.batch*l.inputs, sizeof(float));
float *truth_cpu = 0;
if(state.truth){
- truth_cpu = calloc(layer.batch*outputs, sizeof(float));
- cuda_pull_array(state.truth, truth_cpu, layer.batch*outputs);
+ truth_cpu = calloc(l.batch*outputs, sizeof(float));
+ cuda_pull_array(state.truth, truth_cpu, l.batch*outputs);
}
network_state cpu_state;
cpu_state.train = state.train;
@@ -467,10 +469,10 @@
cpu_state.truth = truth_cpu;
cpu_state.delta = delta_cpu;
- cuda_pull_array(state.input, in_cpu, layer.batch*layer.inputs);
- cuda_pull_array(layer.delta_gpu, layer.delta, layer.batch*outputs);
- backward_detection_layer(layer, cpu_state);
- cuda_push_array(state.delta, delta_cpu, layer.batch*layer.inputs);
+ cuda_pull_array(state.input, in_cpu, l.batch*l.inputs);
+ cuda_pull_array(l.delta_gpu, l.delta, l.batch*outputs);
+ backward_detection_layer(l, cpu_state);
+ cuda_push_array(state.delta, delta_cpu, l.batch*l.inputs);
free(in_cpu);
free(delta_cpu);
--
Gitblit v1.10.0