From 516f019ba6fb88de7218dd3b4eaeadb1cf676518 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Mon, 11 May 2015 20:46:49 +0000
Subject: [PATCH] route handles input images well....ish

---
 src/network_kernels.cu |  235 +++++++++++++++++-----------------------------------------
 1 files changed, 68 insertions(+), 167 deletions(-)

diff --git a/src/network_kernels.cu b/src/network_kernels.cu
index 7ff5d15..da21d63 100644
--- a/src/network_kernels.cu
+++ b/src/network_kernels.cu
@@ -15,7 +15,6 @@
 #include "deconvolutional_layer.h"
 #include "maxpool_layer.h"
 #include "cost_layer.h"
-#include "normalization_layer.h"
 #include "softmax_layer.h"
 #include "dropout_layer.h"
 #include "route_layer.h"
@@ -29,37 +28,29 @@
 {
     int i;
     for(i = 0; i < net.n; ++i){
-        if(net.types[i] == CONVOLUTIONAL){
-            forward_convolutional_layer_gpu(*(convolutional_layer *)net.layers[i], state);
+        layer l = net.layers[i];
+        if(l.type == CONVOLUTIONAL){
+            forward_convolutional_layer_gpu(l, state);
+        } else if(l.type == DECONVOLUTIONAL){
+            forward_deconvolutional_layer_gpu(l, state);
+        } else if(l.type == DETECTION){
+            forward_detection_layer_gpu(l, state);
+        } else if(l.type == CONNECTED){
+            forward_connected_layer_gpu(l, state);
+        } else if(l.type == CROP){
+            forward_crop_layer_gpu(l, state);
+        } else if(l.type == COST){
+            forward_cost_layer_gpu(l, state);
+        } else if(l.type == SOFTMAX){
+            forward_softmax_layer_gpu(l, state);
+        } else if(l.type == MAXPOOL){
+            forward_maxpool_layer_gpu(l, state);
+        } else if(l.type == DROPOUT){
+            forward_dropout_layer_gpu(l, state);
+        } else if(l.type == ROUTE){
+            forward_route_layer_gpu(l, net);
         }
-        else if(net.types[i] == DECONVOLUTIONAL){
-            forward_deconvolutional_layer_gpu(*(deconvolutional_layer *)net.layers[i], state);
-        }
-        else if(net.types[i] == COST){
-            forward_cost_layer_gpu(*(cost_layer *)net.layers[i], state);
-        }
-        else if(net.types[i] == CONNECTED){
-            forward_connected_layer_gpu(*(connected_layer *)net.layers[i], state);
-        }
-        else if(net.types[i] == DETECTION){
-            forward_detection_layer_gpu(*(detection_layer *)net.layers[i], state);
-        }
-        else if(net.types[i] == MAXPOOL){
-            forward_maxpool_layer_gpu(*(maxpool_layer *)net.layers[i], state);
-        }
-        else if(net.types[i] == SOFTMAX){
-            forward_softmax_layer_gpu(*(softmax_layer *)net.layers[i], state);
-        }
-        else if(net.types[i] == DROPOUT){
-            forward_dropout_layer_gpu(*(dropout_layer *)net.layers[i], state);
-        }
-        else if(net.types[i] == CROP){
-            forward_crop_layer_gpu(*(crop_layer *)net.layers[i], state);
-        }
-        else if(net.types[i] == ROUTE){
-            forward_route_layer_gpu(*(route_layer *)net.layers[i], net);
-        }
-        state.input = get_network_output_gpu_layer(net, i);
+        state.input = l.output_gpu;
     }
 }
 
@@ -68,40 +59,33 @@
     int i;
     float * original_input = state.input;
     for(i = net.n-1; i >= 0; --i){
+        layer l = net.layers[i];
         if(i == 0){
             state.input = original_input;
             state.delta = 0;
         }else{
-            state.input = get_network_output_gpu_layer(net, i-1);
-            state.delta = get_network_delta_gpu_layer(net, i-1);
+            layer prev = net.layers[i-1];
+            state.input = prev.output_gpu;
+            state.delta = prev.delta_gpu;
         }
-
-        if(net.types[i] == CONVOLUTIONAL){
-            backward_convolutional_layer_gpu(*(convolutional_layer *)net.layers[i], state);
-        }
-        else if(net.types[i] == DECONVOLUTIONAL){
-            backward_deconvolutional_layer_gpu(*(deconvolutional_layer *)net.layers[i], state);
-        }
-        else if(net.types[i] == COST){
-            backward_cost_layer_gpu(*(cost_layer *)net.layers[i], state);
-        }
-        else if(net.types[i] == CONNECTED){
-            backward_connected_layer_gpu(*(connected_layer *)net.layers[i], state);
-        }
-        else if(net.types[i] == DETECTION){
-            backward_detection_layer_gpu(*(detection_layer *)net.layers[i], state);
-        }
-        else if(net.types[i] == MAXPOOL){
-            backward_maxpool_layer_gpu(*(maxpool_layer *)net.layers[i], state);
-        }
-        else if(net.types[i] == DROPOUT){
-            backward_dropout_layer_gpu(*(dropout_layer *)net.layers[i], state);
-        }
-        else if(net.types[i] == SOFTMAX){
-            backward_softmax_layer_gpu(*(softmax_layer *)net.layers[i], state);
-        }
-        else if(net.types[i] == ROUTE){
-            backward_route_layer_gpu(*(route_layer *)net.layers[i], net);
+        if(l.type == CONVOLUTIONAL){
+            backward_convolutional_layer_gpu(l, state);
+        } else if(l.type == DECONVOLUTIONAL){
+            backward_deconvolutional_layer_gpu(l, state);
+        } else if(l.type == MAXPOOL){
+            if(i != 0) backward_maxpool_layer_gpu(l, state);
+        } else if(l.type == DROPOUT){
+            backward_dropout_layer_gpu(l, state);
+        } else if(l.type == DETECTION){
+            backward_detection_layer_gpu(l, state);
+        } else if(l.type == SOFTMAX){
+            if(i != 0) backward_softmax_layer_gpu(l, state);
+        } else if(l.type == CONNECTED){
+            backward_connected_layer_gpu(l, state);
+        } else if(l.type == COST){
+            backward_cost_layer_gpu(l, state);
+        } else if(l.type == ROUTE){
+            backward_route_layer_gpu(l, net);
         }
     }
 }
@@ -111,89 +95,17 @@
     int i;
     int update_batch = net.batch*net.subdivisions;
     for(i = 0; i < net.n; ++i){
-        if(net.types[i] == CONVOLUTIONAL){
-            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-            update_convolutional_layer_gpu(layer, update_batch, net.learning_rate, net.momentum, net.decay);
-        }
-        else if(net.types[i] == DECONVOLUTIONAL){
-            deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
-            update_deconvolutional_layer_gpu(layer, net.learning_rate, net.momentum, net.decay);
-        }
-        else if(net.types[i] == CONNECTED){
-            connected_layer layer = *(connected_layer *)net.layers[i];
-            update_connected_layer_gpu(layer, update_batch, net.learning_rate, net.momentum, net.decay);
+        layer l = net.layers[i];
+        if(l.type == CONVOLUTIONAL){
+            update_convolutional_layer_gpu(l, update_batch, net.learning_rate, net.momentum, net.decay);
+        } else if(l.type == DECONVOLUTIONAL){
+            update_deconvolutional_layer_gpu(l, net.learning_rate, net.momentum, net.decay);
+        } else if(l.type == CONNECTED){
+            update_connected_layer_gpu(l, update_batch, net.learning_rate, net.momentum, net.decay);
         }
     }
 }
 
-float * get_network_output_gpu_layer(network net, int i)
-{
-    if(net.types[i] == CONVOLUTIONAL){
-        return ((convolutional_layer *)net.layers[i]) -> output_gpu;
-    }
-    else if(net.types[i] == DECONVOLUTIONAL){
-        return ((deconvolutional_layer *)net.layers[i]) -> output_gpu;
-    }
-    else if(net.types[i] == DETECTION){
-        return ((detection_layer *)net.layers[i]) -> output_gpu;
-    }
-    else if(net.types[i] == CONNECTED){
-        return ((connected_layer *)net.layers[i]) -> output_gpu;
-    }
-    else if(net.types[i] == MAXPOOL){
-        return ((maxpool_layer *)net.layers[i]) -> output_gpu;
-    }
-    else if(net.types[i] == CROP){
-        return ((crop_layer *)net.layers[i]) -> output_gpu;
-    }
-    else if(net.types[i] == SOFTMAX){
-        return ((softmax_layer *)net.layers[i]) -> output_gpu;
-    }
-    else if(net.types[i] == ROUTE){
-        return ((route_layer *)net.layers[i]) -> output_gpu;
-    }
-    else if(net.types[i] == DROPOUT){
-        return get_network_output_gpu_layer(net, i-1);
-    }
-    return 0;
-}
-
-float * get_network_delta_gpu_layer(network net, int i)
-{
-    if(net.types[i] == CONVOLUTIONAL){
-        convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-        return layer.delta_gpu;
-    }
-    else if(net.types[i] == DETECTION){
-        detection_layer layer = *(detection_layer *)net.layers[i];
-        return layer.delta_gpu;
-    }
-    else if(net.types[i] == DECONVOLUTIONAL){
-        deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
-        return layer.delta_gpu;
-    }
-    else if(net.types[i] == CONNECTED){
-        connected_layer layer = *(connected_layer *)net.layers[i];
-        return layer.delta_gpu;
-    }
-    else if(net.types[i] == MAXPOOL){
-        maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-        return layer.delta_gpu;
-    }
-    else if(net.types[i] == ROUTE){
-        route_layer layer = *(route_layer *)net.layers[i];
-        return layer.delta_gpu;
-    }
-    else if(net.types[i] == SOFTMAX){
-        softmax_layer layer = *(softmax_layer *)net.layers[i];
-        return layer.delta_gpu;
-    } else if(net.types[i] == DROPOUT){
-        if(i == 0) return 0;
-        return get_network_delta_gpu_layer(net, i-1);
-    }
-    return 0;
-}
-
 float train_network_datum_gpu(network net, float *x, float *y)
 {
     network_state state;
@@ -219,33 +131,22 @@
 
 float *get_network_output_layer_gpu(network net, int i)
 {
-    if(net.types[i] == CONVOLUTIONAL){
-        convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-        return layer.output;
-    }
-    else if(net.types[i] == DECONVOLUTIONAL){
-        deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
-        return layer.output;
-    }
-    else if(net.types[i] == CONNECTED){
-        connected_layer layer = *(connected_layer *)net.layers[i];
-        cuda_pull_array(layer.output_gpu, layer.output, layer.outputs*layer.batch);
-        return layer.output;
-    }
-    else if(net.types[i] == DETECTION){
-        detection_layer layer = *(detection_layer *)net.layers[i];
-        int outputs = get_detection_layer_output_size(layer);
-        cuda_pull_array(layer.output_gpu, layer.output, outputs*layer.batch);
-        return layer.output;
-    }
-    else if(net.types[i] == MAXPOOL){
-        maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-        return layer.output;
-    }
-    else if(net.types[i] == SOFTMAX){
-        softmax_layer layer = *(softmax_layer *)net.layers[i];
-        pull_softmax_layer_output(layer);
-        return layer.output;
+    layer l = net.layers[i];
+    if(l.type == CONVOLUTIONAL){
+        return l.output;
+    } else if(l.type == DECONVOLUTIONAL){
+        return l.output;
+    } else if(l.type == CONNECTED){
+        cuda_pull_array(l.output_gpu, l.output, l.outputs*l.batch);
+        return l.output;
+    } else if(l.type == DETECTION){
+        cuda_pull_array(l.output_gpu, l.output, l.outputs*l.batch);
+        return l.output;
+    } else if(l.type == MAXPOOL){
+        return l.output;
+    } else if(l.type == SOFTMAX){
+        pull_softmax_layer_output(l);
+        return l.output;
     }
     return 0;
 }
@@ -253,7 +154,7 @@
 float *get_network_output_gpu(network net)
 {
     int i;
-    for(i = net.n-1; i > 0; --i) if(net.types[i] != COST) break;
+    for(i = net.n-1; i > 0; --i) if(net.layers[i].type != COST) break;
     return get_network_output_layer_gpu(net, i);
 }
 

--
Gitblit v1.10.0