From 537d135feba179636e9bbfe296e078d51f59914c Mon Sep 17 00:00:00 2001
From: AlexeyAB <alexeyab84@gmail.com>
Date: Mon, 19 Mar 2018 23:16:51 +0000
Subject: [PATCH] Improve training performance - batch-norm using cuDNN.

---
 src/image.c                  |    1 
 src/batchnorm_layer.c        |  103 +++++++++++++++++++++++++
 src/convolutional_layer.c    |    4 +
 src/network_kernels.cu       |    2 
 src/connected_layer.c        |   19 +++-
 src/detector.c               |    3 
 src/blas.h                   |    1 
 src/cuda.h                   |   32 ++++---
 src/convolutional_kernels.cu |   10 +-
 src/region_layer.c           |    4 
 src/blas_kernels.cu          |   43 +++++++---
 src/layer.h                  |   13 +++
 12 files changed, 193 insertions(+), 42 deletions(-)

diff --git a/src/batchnorm_layer.c b/src/batchnorm_layer.c
index b53548b..0151582 100644
--- a/src/batchnorm_layer.c
+++ b/src/batchnorm_layer.c
@@ -52,6 +52,12 @@
 
     layer.x_gpu = cuda_make_array(layer.output, layer.batch*layer.outputs);
     layer.x_norm_gpu = cuda_make_array(layer.output, layer.batch*layer.outputs);
+#ifdef CUDNN
+	cudnnCreateTensorDescriptor(&layer.normTensorDesc);
+	cudnnCreateTensorDescriptor(&layer.dstTensorDesc);
+	cudnnSetTensor4dDescriptor(layer.dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, layer.batch, layer.out_c, layer.out_h, layer.out_w);
+	cudnnSetTensor4dDescriptor(layer.normTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, layer.out_c, 1, 1);
+#endif
 #endif
     return layer;
 }
@@ -170,7 +176,7 @@
     cuda_push_array(l.rolling_mean_gpu, l.rolling_mean, l.c);
     cuda_push_array(l.rolling_variance_gpu, l.rolling_variance, l.c);
 }
-
+/*
 void forward_batchnorm_layer_gpu(layer l, network_state state)
 {
     if(l.type == BATCHNORM) copy_ongpu(l.outputs*l.batch, state.input, 1, l.output_gpu, 1);
@@ -209,3 +215,98 @@
     if(l.type == BATCHNORM) copy_ongpu(l.outputs*l.batch, l.delta_gpu, 1, state.delta, 1);
 }
 #endif
+*/
+
+
+void forward_batchnorm_layer_gpu(layer l, network_state state)
+{
+	if (l.type == BATCHNORM) copy_ongpu(l.outputs*l.batch, state.input, 1, l.output_gpu, 1);
+	copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_gpu, 1);
+	if (state.train) {
+#ifdef CUDNN
+		float one = 1;
+		float zero = 0;
+		cudnnBatchNormalizationForwardTraining(cudnn_handle(),
+			CUDNN_BATCHNORM_SPATIAL,
+			&one,
+			&zero,
+			l.dstTensorDesc,
+			l.x_gpu,
+			l.dstTensorDesc,
+			l.output_gpu,
+			l.normTensorDesc,
+			l.scales_gpu,
+			l.biases_gpu,
+			.01,
+			l.rolling_mean_gpu,
+			l.rolling_variance_gpu,
+			.00001,
+			l.mean_gpu,
+			l.variance_gpu);
+#else
+		fast_mean_gpu(l.output_gpu, l.batch, l.out_c, l.out_h*l.out_w, l.mean_gpu);
+		fast_variance_gpu(l.output_gpu, l.mean_gpu, l.batch, l.out_c, l.out_h*l.out_w, l.variance_gpu);
+
+		scal_ongpu(l.out_c, .99, l.rolling_mean_gpu, 1);
+		axpy_ongpu(l.out_c, .01, l.mean_gpu, 1, l.rolling_mean_gpu, 1);
+		scal_ongpu(l.out_c, .99, l.rolling_variance_gpu, 1);
+		axpy_ongpu(l.out_c, .01, l.variance_gpu, 1, l.rolling_variance_gpu, 1);
+
+		copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_gpu, 1);
+		normalize_gpu(l.output_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.out_c, l.out_h*l.out_w);
+		copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_norm_gpu, 1);
+
+		scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
+		add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.out_c, l.out_w*l.out_h);
+#endif
+	}
+	else {
+		normalize_gpu(l.output_gpu, l.rolling_mean_gpu, l.rolling_variance_gpu, l.batch, l.out_c, l.out_h*l.out_w);
+		scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
+		add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.out_c, l.out_w*l.out_h);
+	}
+
+}
+
+void backward_batchnorm_layer_gpu(layer l, network_state state)
+{
+	if (!state.train) {
+		l.mean_gpu = l.rolling_mean_gpu;
+		l.variance_gpu = l.rolling_variance_gpu;
+	}
+#ifdef CUDNN
+	float one = 1;
+	float zero = 0;
+	cudnnBatchNormalizationBackward(cudnn_handle(),
+		CUDNN_BATCHNORM_SPATIAL,
+		&one,
+		&zero,
+		&one,
+		&one,
+		l.dstTensorDesc,
+		l.x_gpu,
+		l.dstTensorDesc,
+		l.delta_gpu,
+		l.dstTensorDesc,
+		l.x_norm_gpu,
+		l.normTensorDesc,
+		l.scales_gpu,
+		l.scale_updates_gpu,
+		l.bias_updates_gpu,
+		.00001,
+		l.mean_gpu,
+		l.variance_gpu);
+	copy_ongpu(l.outputs*l.batch, l.x_norm_gpu, 1, l.delta_gpu, 1);
+#else
+	backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.out_c, l.out_w*l.out_h);
+	backward_scale_gpu(l.x_norm_gpu, l.delta_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.scale_updates_gpu);
+
+	scale_bias_gpu(l.delta_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
+
+	fast_mean_delta_gpu(l.delta_gpu, l.variance_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.mean_delta_gpu);
+	fast_variance_delta_gpu(l.x_gpu, l.delta_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.variance_delta_gpu);
+	normalize_delta_gpu(l.x_gpu, l.mean_gpu, l.variance_gpu, l.mean_delta_gpu, l.variance_delta_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.delta_gpu);
+#endif
+	if (l.type == BATCHNORM) copy_ongpu(l.outputs*l.batch, l.delta_gpu, 1, state.delta, 1);
+}
+#endif
\ No newline at end of file
diff --git a/src/blas.h b/src/blas.h
index a5b82ec..e1bfbf0 100644
--- a/src/blas.h
+++ b/src/blas.h
@@ -80,6 +80,7 @@
 
 void softmax_gpu(float *input, int n, int offset, int groups, float temp, float *output);
 void adam_gpu(int n, float *x, float *m, float *v, float B1, float B2, float rate, float eps, int t);
+void adam_update_gpu(float *w, float *d, float *m, float *v, float B1, float B2, float eps, float decay, float rate, int n, int batch, int t);
 
 void flatten_ongpu(float *x, int spatial, int layers, int batch, int forward, float *out);
 
diff --git a/src/blas_kernels.cu b/src/blas_kernels.cu
index 8e1cf19..97b5977 100644
--- a/src/blas_kernels.cu
+++ b/src/blas_kernels.cu
@@ -145,8 +145,8 @@
     int index = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
     if (index >= N) return;
     
-    x[index] = x[index] - (rate * sqrt(1.-pow(B2, t)) / (1.-pow(B1, t)) * m[index] / (sqrt(v[index]) + eps));
-    //if(index == 0) printf("%f %f %f %f\n", m[index], v[index], (rate * sqrt(1.-pow(B2, t)) / (1.-pow(B1, t)) * m[index] / (sqrt(v[index]) + eps)));
+    x[index] = x[index] - (rate * sqrtf(1.F-powf(B2, t)) / (1.F-powf(B1, t)) * m[index] / (sqrtf(v[index]) + eps));
+    //if(index == 0) printf("%f %f %f %f\n", m[index], v[index], (rate * sqrtf(1.F-powf(B2, t)) / (1.F-powf(B1, t)) * m[index] / (sqrt(v[index]) + eps)));
 }
 
 extern "C" void adam_gpu(int n, float *x, float *m, float *v, float B1, float B2, float rate, float eps, int t)
@@ -155,13 +155,27 @@
     check_error(cudaPeekAtLastError());
 }
 
+extern "C" void adam_update_gpu(float *w, float *d, float *m, float *v, float B1, float B2, float eps, float decay, float rate, int n, int batch, int t)
+{
+	scal_ongpu(n, B1, m, 1);
+	scal_ongpu(n, B2, v, 1);
+	axpy_ongpu(n, -decay*batch, w, 1, d, 1);
+
+	axpy_ongpu(n, (1 - B1), d, 1, m, 1);
+	mul_ongpu(n, d, 1, d, 1);
+	axpy_ongpu(n, (1 - B2), d, 1, v, 1);
+
+	adam_gpu(n, w, m, v, B1, B2, rate, eps, t);
+	fill_ongpu(n, 0, d, 1);
+}
+
 __global__ void normalize_kernel(int N, float *x, float *mean, float *variance, int batch, int filters, int spatial)
 {
     int index = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
     if (index >= N) return;
     int f = (index/spatial)%filters;
     
-    x[index] = (x[index] - mean[f])/(sqrt(variance[f]) + .000001f);
+    x[index] = (x[index] - mean[f])/(sqrtf(variance[f]) + .000001f);
 }
 
 __global__ void normalize_delta_kernel(int N, float *x, float *mean, float *variance, float *mean_delta, float *variance_delta, int batch, int filters, int spatial, float *delta)
@@ -170,7 +184,7 @@
     if (index >= N) return;
     int f = (index/spatial)%filters;
     
-    delta[index] = delta[index] * 1./(sqrt(variance[f]) + .000001f) + variance_delta[f] * 2. * (x[index] - mean[f]) / (spatial * batch) + mean_delta[f]/(spatial*batch);
+    delta[index] = delta[index] * 1.F/(sqrtf(variance[f]) + .000001f) + variance_delta[f] * 2. * (x[index] - mean[f]) / (spatial * batch) + mean_delta[f]/(spatial*batch);
 }
 
 extern "C" void normalize_delta_gpu(float *x, float *mean, float *variance, float *mean_delta, float *variance_delta, int batch, int filters, int spatial, float *delta)
@@ -192,7 +206,7 @@
             variance_delta[i] += delta[index]*(x[index] - mean[i]);
         }
     }
-    variance_delta[i] *= -.5 * pow(variance[i] + .000001f, (float)(-3./2.));
+    variance_delta[i] *= -.5 * powf(variance[i] + .000001f, (float)(-3./2.));
 }
 
 __global__ void accumulate_kernel(float *x, int n, int groups, float *sum)
@@ -230,7 +244,7 @@
         for(i = 0; i < threads; ++i){
             mean_delta[filter] += local[i];
         }
-        mean_delta[filter] *= (-1./sqrt(variance[filter] + .000001f));
+        mean_delta[filter] *= (-1.F/sqrtf(variance[filter] + .000001f));
     }
 }
 
@@ -259,7 +273,7 @@
         for(i = 0; i < threads; ++i){
             variance_delta[filter] += local[i];
         }
-        variance_delta[filter] *= -.5 * pow(variance[filter] + .000001f, (float)(-3./2.));
+        variance_delta[filter] *= -.5 * powf(variance[filter] + .000001f, (float)(-3./2.));
     }
 }
 
@@ -276,7 +290,7 @@
             mean_delta[i] += delta[index];
         }
     }
-    mean_delta[i] *= (-1./sqrt(variance[i] + .000001f));
+    mean_delta[i] *= (-1.F/sqrtf(variance[i] + .000001f));
 }
 
 extern "C" void mean_delta_gpu(float *delta, float *variance, int batch, int filters, int spatial, float *mean_delta)
@@ -299,7 +313,7 @@
 
 __global__ void  mean_kernel(float *x, int batch, int filters, int spatial, float *mean)
 {
-    float scale = 1./(batch * spatial);
+    float scale = 1.F/(batch * spatial);
     int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
     if (i >= filters) return;
     int j,k;
@@ -315,7 +329,7 @@
 
 __global__ void variance_kernel(float *x, float *mean, int batch, int filters, int spatial, float *variance)
 {
-    float scale = 1./(batch * spatial - 1);
+    float scale = 1.F/(batch * spatial - 1);
     int j,k;
     int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
     if (i >= filters) return;
@@ -323,7 +337,7 @@
     for(j = 0; j < batch; ++j){
         for(k = 0; k < spatial; ++k){
             int index = j*filters*spatial + i*spatial + k;
-            variance[i] += pow((x[index] - mean[i]), 2);
+            variance[i] += powf((x[index] - mean[i]), 2);
         }
     }
     variance[i] *= scale;
@@ -370,7 +384,7 @@
 __global__ void pow_kernel(int N, float ALPHA, float *X, int INCX, float *Y, int INCY)
 {
     int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
-    if(i < N) Y[i*INCY] = pow(X[i*INCX], ALPHA);
+    if(i < N) Y[i*INCY] = powf(X[i*INCX], ALPHA);
 }
 
 __global__ void const_kernel(int N, float ALPHA, float *X, int INCX)
@@ -474,7 +488,7 @@
         for(i = 0; i < spatial; i += threads){
             int index = j*spatial*filters + filter*spatial + i + id;
 
-            local[id] += (i+id < spatial) ? pow((x[index] - mean[filter]), 2) : 0;
+            local[id] += (i+id < spatial) ? powf((x[index] - mean[filter]), 2) : 0;
         }
     }
 	__syncthreads();
@@ -646,7 +660,7 @@
     if(sample < 1) sample = 1;
 
     int size = batch * minw * minh * minc;
-    shortcut_kernel<<<cuda_gridsize(size), BLOCK>>>(size, minw, minh, minc, stride, sample, batch, w1, h1, c1, add, w2, h2, c2, out);
+    shortcut_kernel<<<cuda_gridsize(size), BLOCK, 0, get_cuda_stream()>>>(size, minw, minh, minc, stride, sample, batch, w1, h1, c1, add, w2, h2, c2, out);
     check_error(cudaPeekAtLastError());
 }
 
@@ -769,3 +783,4 @@
     softmax_kernel<<<cuda_gridsize(batch), BLOCK, 0, get_cuda_stream()>>>(inputs, offset, batch, input, temp, output);
     check_error(cudaPeekAtLastError());
 }
+
diff --git a/src/connected_layer.c b/src/connected_layer.c
index b678ed0..e6dc759 100644
--- a/src/connected_layer.c
+++ b/src/connected_layer.c
@@ -97,6 +97,12 @@
 
         l.x_gpu = cuda_make_array(l.output, l.batch*outputs);
         l.x_norm_gpu = cuda_make_array(l.output, l.batch*outputs);
+#ifdef CUDNN
+		cudnnCreateTensorDescriptor(&l.normTensorDesc);
+		cudnnCreateTensorDescriptor(&l.dstTensorDesc);
+		cudnnSetTensor4dDescriptor(l.dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l.batch, l.out_c, l.out_h, l.out_w);
+		cudnnSetTensor4dDescriptor(l.normTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, l.out_c, 1, 1);
+#endif
     }
 #endif
     l.activation = activation;
@@ -280,12 +286,13 @@
     float * b = l.weights_gpu;
     float * c = l.output_gpu;
     gemm_ongpu(0,1,m,n,k,1,a,k,b,k,1,c,n);
-    if(l.batch_normalize){
-        forward_batchnorm_layer_gpu(l, state);
-    }
-    for(i = 0; i < l.batch; ++i){
-        axpy_ongpu(l.outputs, 1, l.biases_gpu, 1, l.output_gpu + i*l.outputs, 1);
-    }
+	if (l.batch_normalize) {
+		forward_batchnorm_layer_gpu(l, state);
+	}
+	else {
+		add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.outputs, 1);
+	}
+    //for(i = 0; i < l.batch; ++i) axpy_ongpu(l.outputs, 1, l.biases_gpu, 1, l.output_gpu + i*l.outputs, 1);
     activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation);
 }
 
diff --git a/src/convolutional_kernels.cu b/src/convolutional_kernels.cu
index 44b9a0f..603d531 100644
--- a/src/convolutional_kernels.cu
+++ b/src/convolutional_kernels.cu
@@ -37,7 +37,7 @@
     int i = 0;
     float mean = 0;
     for(i = 0; i < n; ++i){
-        mean += abs(input[i*size + s]);
+        mean += fabs(input[i*size + s]);
     }
     mean = mean / n;
     for(i = 0; i < n; ++i){
@@ -59,7 +59,7 @@
     int i = 0;
     float mean = 0;
     for(i = 0; i < size; ++i){
-        mean += abs(weights[f*size + i]);
+        mean += fabs(weights[f*size + i]);
     }
     mean = mean / size;
     for(i = 0; i < size; ++i){
@@ -205,8 +205,10 @@
 
     if (l.batch_normalize) {
         forward_batchnorm_layer_gpu(l, state);
-    }
-    add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.n, l.out_w*l.out_h);
+	}
+	else {
+		add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.n, l.out_w*l.out_h);
+	}
 
     activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation);
     //if(l.dot > 0) dot_error_gpu(l);
diff --git a/src/convolutional_layer.c b/src/convolutional_layer.c
index 7c0c00b..fb606ae 100644
--- a/src/convolutional_layer.c
+++ b/src/convolutional_layer.c
@@ -174,6 +174,9 @@
     cudnnSetTensor4dDescriptor(l->srcTensorDesc, CUDNN_TENSOR_NCHW, data_type, l->batch, l->c, l->h, l->w);
     cudnnSetTensor4dDescriptor(l->dstTensorDesc, CUDNN_TENSOR_NCHW, data_type, l->batch, l->out_c, l->out_h, l->out_w);
     cudnnSetFilter4dDescriptor(l->weightDesc, data_type, CUDNN_TENSOR_NCHW, l->n, l->c, l->size, l->size);
+
+	// batch norm
+	cudnnSetTensor4dDescriptor(l->normTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, l->out_c, 1, 1);
 #if(CUDNN_MAJOR >= 6)
 	cudnnSetConvolution2dDescriptor(l->convDesc, l->pad, l->pad, l->stride, l->stride, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT);	// cudnn >= 6.0
 #else
@@ -341,6 +344,7 @@
             l.x_norm_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
         }
 #ifdef CUDNN
+		cudnnCreateTensorDescriptor(&l.normTensorDesc);
         cudnnCreateTensorDescriptor(&l.srcTensorDesc);
         cudnnCreateTensorDescriptor(&l.dstTensorDesc);
         cudnnCreateFilterDescriptor(&l.weightDesc);
diff --git a/src/cuda.h b/src/cuda.h
index 0bc0557..c328fce 100644
--- a/src/cuda.h
+++ b/src/cuda.h
@@ -19,19 +19,25 @@
 #include "cudnn.h"
 #endif
 
-void check_error(cudaError_t status);
-cublasHandle_t blas_handle();
-float *cuda_make_array(float *x, size_t n);
-int *cuda_make_int_array(size_t n);
-void cuda_push_array(float *x_gpu, float *x, size_t n);
-void cuda_pull_array(float *x_gpu, float *x, size_t n);
-void cuda_set_device(int n);
-int cuda_get_device();
-void cuda_free(float *x_gpu);
-void cuda_random(float *x_gpu, size_t n);
-float cuda_compare(float *x_gpu, float *x, size_t n, char *s);
-dim3 cuda_gridsize(size_t n);
-cudaStream_t get_cuda_stream();
+#ifdef __cplusplus
+extern "C" {
+#endif
+	void check_error(cudaError_t status);
+	cublasHandle_t blas_handle();
+	float *cuda_make_array(float *x, size_t n);
+	int *cuda_make_int_array(size_t n);
+	void cuda_push_array(float *x_gpu, float *x, size_t n);
+	void cuda_pull_array(float *x_gpu, float *x, size_t n);
+	void cuda_set_device(int n);
+	int cuda_get_device();
+	void cuda_free(float *x_gpu);
+	void cuda_random(float *x_gpu, size_t n);
+	float cuda_compare(float *x_gpu, float *x, size_t n, char *s);
+	dim3 cuda_gridsize(size_t n);
+	cudaStream_t get_cuda_stream();
+#ifdef __cplusplus
+}
+#endif
 
 #ifdef CUDNN
 cudnnHandle_t cudnn_handle();
diff --git a/src/detector.c b/src/detector.c
index 9f608a0..3dfbce6 100644
--- a/src/detector.c
+++ b/src/detector.c
@@ -91,7 +91,7 @@
 	args.small_object = l.small_object;
     args.d = &buffer;
     args.type = DETECTION_DATA;
-	args.threads = 8;	// 64
+	args.threads = 64;	// 8
 
     args.angle = net.angle;
     args.exposure = net.exposure;
@@ -1031,6 +1031,7 @@
         }
         image im = load_image_color(input,0,0);
         image sized = resize_image(im, net.w, net.h);
+		//image sized = letterbox_image(im, net.w, net.h);
         layer l = net.layers[net.n-1];
 
         box *boxes = calloc(l.w*l.h*l.n, sizeof(box));
diff --git a/src/image.c b/src/image.c
index 6eb5c75..ba9077b 100644
--- a/src/image.c
+++ b/src/image.c
@@ -352,6 +352,7 @@
 	}
 	cvPutText(img, "Iteration number", cvPoint(draw_size / 2, img_size - 10), &font, CV_RGB(0, 0, 0));
 	cvPutText(img, "Press 's' to save: chart.jpg", cvPoint(5, img_size - 10), &font, CV_RGB(0, 0, 0));
+	printf(" If error occurs - run training with flag: -dont_show \n");
 	cvNamedWindow("average loss", CV_WINDOW_NORMAL);
 	cvMoveWindow("average loss", 0, 0);
 	cvResizeWindow("average loss", img_size, img_size);
diff --git a/src/layer.h b/src/layer.h
index 4e0af56..3a0e03d 100644
--- a/src/layer.h
+++ b/src/layer.h
@@ -42,6 +42,18 @@
     SSE, MASKED, SMOOTH
 } COST_TYPE;
 
+typedef struct {
+	int batch;
+	float learning_rate;
+	float momentum;
+	float decay;
+	int adam;
+	float B1;
+	float B2;
+	float eps;
+	int t;
+} update_args;
+
 struct layer{
     LAYER_TYPE type;
     ACTIVATION activation;
@@ -261,6 +273,7 @@
     #ifdef CUDNN
     cudnnTensorDescriptor_t srcTensorDesc, dstTensorDesc;
     cudnnTensorDescriptor_t dsrcTensorDesc, ddstTensorDesc;
+	cudnnTensorDescriptor_t normTensorDesc;
     cudnnFilterDescriptor_t weightDesc;
     cudnnFilterDescriptor_t dweightDesc;
     cudnnConvolutionDescriptor_t convDesc;
diff --git a/src/network_kernels.cu b/src/network_kernels.cu
index 503a1b8..d6bb294 100644
--- a/src/network_kernels.cu
+++ b/src/network_kernels.cu
@@ -121,7 +121,7 @@
 	}
 #endif
     forward_network_gpu(net, state);
-	cudaStreamSynchronize(get_cuda_stream());
+	//cudaStreamSynchronize(get_cuda_stream());
     backward_network_gpu(net, state);
 }
 
diff --git a/src/region_layer.c b/src/region_layer.c
index 9ca71c6..f179906 100644
--- a/src/region_layer.c
+++ b/src/region_layer.c
@@ -434,7 +434,7 @@
         cuda_pull_array(state.truth, truth_cpu, num_truth);
     }
     cuda_pull_array(l.output_gpu, in_cpu, l.batch*l.inputs);
-	cudaStreamSynchronize(get_cuda_stream());
+	//cudaStreamSynchronize(get_cuda_stream());
     network_state cpu_state = state;
     cpu_state.train = state.train;
     cpu_state.truth = truth_cpu;
@@ -444,7 +444,7 @@
     free(cpu_state.input);
     if(!state.train) return;
     cuda_push_array(l.delta_gpu, l.delta, l.batch*l.outputs);
-	cudaStreamSynchronize(get_cuda_stream());
+	//cudaStreamSynchronize(get_cuda_stream());
     if(cpu_state.truth) free(cpu_state.truth);
 }
 

--
Gitblit v1.10.0