From 54d761cf9efa6c77e96855ea80156b0fcd81195d Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Tue, 22 Sep 2015 22:40:15 +0000
Subject: [PATCH] resize image width 1 ><

---
 src/region_layer.c |  207 ++++++++++++++++++++++++++++++---------------------
 1 files changed, 120 insertions(+), 87 deletions(-)

diff --git a/src/region_layer.c b/src/region_layer.c
index 7c34b5c..39af5ee 100644
--- a/src/region_layer.c
+++ b/src/region_layer.c
@@ -6,34 +6,32 @@
 #include "cuda.h"
 #include "utils.h"
 #include <stdio.h>
+#include <assert.h>
 #include <string.h>
 #include <stdlib.h>
 
-int get_region_layer_locations(region_layer l)
-{
-    return l.inputs / (l.classes+l.coords);
-}
-
-region_layer make_region_layer(int batch, int inputs, int n, int classes, int coords, int rescore)
+region_layer make_region_layer(int batch, int inputs, int n, int side, int classes, int coords, int rescore)
 {
     region_layer l = {0};
     l.type = REGION;
-    
+
     l.n = n;
     l.batch = batch;
     l.inputs = inputs;
     l.classes = classes;
     l.coords = coords;
     l.rescore = rescore;
+    l.side = side;
+    assert(side*side*((1 + l.coords)*l.n + l.classes) == inputs);
     l.cost = calloc(1, sizeof(float));
-    int outputs = inputs;
-    l.outputs = outputs;
-    l.output = calloc(batch*outputs, sizeof(float));
-    l.delta = calloc(batch*outputs, sizeof(float));
-    #ifdef GPU
-    l.output_gpu = cuda_make_array(0, batch*outputs);
-    l.delta_gpu = cuda_make_array(0, batch*outputs);
-    #endif
+    l.outputs = l.inputs;
+    l.truths = l.side*l.side*(1+l.coords+l.classes);
+    l.output = calloc(batch*l.outputs, sizeof(float));
+    l.delta = calloc(batch*l.outputs, sizeof(float));
+#ifdef GPU
+    l.output_gpu = cuda_make_array(l.output, batch*l.outputs);
+    l.delta_gpu = cuda_make_array(l.delta, batch*l.outputs);
+#endif
 
     fprintf(stderr, "Region Layer\n");
     srand(0);
@@ -43,91 +41,125 @@
 
 void forward_region_layer(const region_layer l, network_state state)
 {
-    int locations = get_region_layer_locations(l);
+    int locations = l.side*l.side;
     int i,j;
-    for(i = 0; i < l.batch*locations; ++i){
-        int index = i*(l.classes + l.coords);
-        int mask = (!state.truth || !state.truth[index]);
-
-        for(j = 0; j < l.classes; ++j){
-            l.output[index+j] = state.input[index+j];
-        }
-
-        softmax_array(l.output + index, l.classes, l.output + index);
-        index += l.classes;
-
-        for(j = 0; j < l.coords; ++j){
-            l.output[index+j] = mask*state.input[index+j];
+    memcpy(l.output, state.input, l.outputs*l.batch*sizeof(float));
+    int b;
+    if (l.softmax){
+        for(b = 0; b < l.batch; ++b){
+            int index = b*l.inputs;
+            for (i = 0; i < locations; ++i) {
+                int offset = i*l.classes;
+                softmax_array(l.output + index + offset, l.classes,
+                        l.output + index + offset);
+            }
+            int offset = locations*l.classes;
+            activate_array(l.output + index + offset, locations*l.n*(1+l.coords), LOGISTIC);
         }
     }
+
     if(state.train){
         float avg_iou = 0;
+        float avg_cat = 0;
+        float avg_allcat = 0;
+        float avg_obj = 0;
+        float avg_anyobj = 0;
         int count = 0;
         *(l.cost) = 0;
-        int size = l.outputs * l.batch;
+        int size = l.inputs * l.batch;
         memset(l.delta, 0, size * sizeof(float));
-        for (i = 0; i < l.batch*locations; ++i) {
-            int offset = i*(l.classes+l.coords);
-            int bg = state.truth[offset];
-            for (j = offset; j < offset+l.classes; ++j) {
-                //*(l.cost) += pow(state.truth[j] - l.output[j], 2);
-                //l.delta[j] =  state.truth[j] - l.output[j];
-            }
-
-            box anchor = {0,0,.5,.5};
-            box truth_code = {state.truth[j+0], state.truth[j+1], state.truth[j+2], state.truth[j+3]};
-            box out_code =   {l.output[j+0], l.output[j+1], l.output[j+2], l.output[j+3]};
-            box out = decode_box(out_code, anchor);
-            box truth = decode_box(truth_code, anchor);
-
-            if(bg) continue;
-            //printf("Box:       %f %f %f %f\n", truth.x, truth.y, truth.w, truth.h);
-            //printf("Code:      %f %f %f %f\n", truth_code.x, truth_code.y, truth_code.w, truth_code.h);
-            //printf("Pred     : %f %f %f %f\n", out.x, out.y, out.w, out.h);
-            // printf("Pred Code: %f %f %f %f\n", out_code.x, out_code.y, out_code.w, out_code.h);
-            float iou = box_iou(out, truth);
-            avg_iou += iou;
-            ++count;
-
-            /*
-             *(l.cost) += pow((1-iou), 2);
-             l.delta[j+0] = (state.truth[j+0] - l.output[j+0]);
-             l.delta[j+1] = (state.truth[j+1] - l.output[j+1]);
-             l.delta[j+2] = (state.truth[j+2] - l.output[j+2]);
-             l.delta[j+3] = (state.truth[j+3] - l.output[j+3]);
-             */
-
-            for (j = offset+l.classes; j < offset+l.classes+l.coords; ++j) {
-                //*(l.cost) += pow(state.truth[j] - l.output[j], 2);
-                //l.delta[j] =  state.truth[j] - l.output[j];
-                float diff = state.truth[j] - l.output[j];
-                if (fabs(diff) < 1){
-                    l.delta[j] = diff;
-                    *(l.cost) += .5*pow(state.truth[j] - l.output[j], 2);
-                } else {
-                    l.delta[j] = (diff > 0) ? 1 : -1;
-                    *(l.cost) += fabs(diff) - .5;
+        for (b = 0; b < l.batch; ++b){
+            int index = b*l.inputs;
+            for (i = 0; i < locations; ++i) {
+                int truth_index = (b*locations + i)*(1+l.coords+l.classes);
+                int is_obj = state.truth[truth_index];
+                for (j = 0; j < l.n; ++j) {
+                    int p_index = index + locations*l.classes + i*l.n + j;
+                    l.delta[p_index] = l.noobject_scale*(0 - l.output[p_index]);
+                    *(l.cost) += l.noobject_scale*pow(l.output[p_index], 2);
+                    avg_anyobj += l.output[p_index];
                 }
-                //l.delta[j] = state.truth[j] - l.output[j];
-            }
 
-            /*
-               if(l.rescore){
-               for (j = offset; j < offset+l.classes; ++j) {
-               if(state.truth[j]) state.truth[j] = iou;
-               l.delta[j] =  state.truth[j] - l.output[j];
-               }
-               }
-             */
+                int best_index = -1;
+                float best_iou = 0;
+                float best_rmse = 4;
+
+                if (!is_obj) continue;
+
+                int class_index = index + i*l.classes;
+                for(j = 0; j < l.classes; ++j) {
+                    l.delta[class_index+j] = l.class_scale * (state.truth[truth_index+1+j] - l.output[class_index+j]);
+                    *(l.cost) += l.class_scale * pow(state.truth[truth_index+1+j] - l.output[class_index+j], 2);
+                    if(state.truth[truth_index + 1 + j]) avg_cat += l.output[class_index+j];
+                    avg_allcat += l.output[class_index+j];
+                }
+
+                box truth = float_to_box(state.truth + truth_index + 1 + l.classes);
+                truth.x /= l.side;
+                truth.y /= l.side;
+
+                for(j = 0; j < l.n; ++j){
+                    int box_index = index + locations*(l.classes + l.n) + (i*l.n + j) * l.coords;
+                    box out = float_to_box(l.output + box_index);
+                    out.x /= l.side;
+                    out.y /= l.side;
+
+                    if (l.sqrt){
+                        out.w = out.w*out.w;
+                        out.h = out.h*out.h;
+                    }
+
+                    float iou  = box_iou(out, truth);
+                    float rmse = box_rmse(out, truth);
+                    if(best_iou > 0 || iou > 0){
+                        if(iou > best_iou){
+                            best_iou = iou;
+                            best_index = j;
+                        }
+                    }else{
+                        if(rmse < best_rmse){
+                            best_rmse = rmse;
+                            best_index = j;
+                        }
+                    }
+                }
+                int p_index = index + locations*l.classes + i*l.n + best_index;
+                *(l.cost) -= l.noobject_scale * pow(l.output[p_index], 2);
+                *(l.cost) += l.object_scale * pow(1-l.output[p_index], 2);
+                avg_obj += l.output[p_index];
+                l.delta[p_index+0] = l.object_scale * (1.-l.output[p_index]);
+
+                if(l.rescore){
+                    l.delta[p_index+0] = l.object_scale * (best_iou - l.output[p_index]);
+                }
+
+                int box_index = index + locations*(l.classes + l.n) + (i*l.n + best_index) * l.coords;
+                int tbox_index = truth_index + 1 + l.classes;
+                l.delta[box_index+0] = l.coord_scale*(state.truth[tbox_index + 0] - l.output[box_index + 0]);
+                l.delta[box_index+1] = l.coord_scale*(state.truth[tbox_index + 1] - l.output[box_index + 1]);
+                l.delta[box_index+2] = l.coord_scale*(state.truth[tbox_index + 2] - l.output[box_index + 2]);
+                l.delta[box_index+3] = l.coord_scale*(state.truth[tbox_index + 3] - l.output[box_index + 3]);
+                if(l.sqrt){
+                    l.delta[box_index+2] = l.coord_scale*(sqrt(state.truth[tbox_index + 2]) - l.output[box_index + 2]);
+                    l.delta[box_index+3] = l.coord_scale*(sqrt(state.truth[tbox_index + 3]) - l.output[box_index + 3]);
+                }
+
+                *(l.cost) += pow(1-best_iou, 2);
+                avg_iou += best_iou;
+                ++count;
+            }
+            if(l.softmax){
+                gradient_array(l.output + index + locations*l.classes, locations*l.n*(1+l.coords), 
+                        LOGISTIC, l.delta + index + locations*l.classes);
+            }
         }
-        printf("Avg IOU: %f\n", avg_iou/count);
+        printf("Region Avg IOU: %f, Pos Cat: %f, All Cat: %f, Pos Obj: %f, Any Obj: %f, count: %d\n", avg_iou/count, avg_cat/count, avg_allcat/(count*l.classes), avg_obj/count, avg_anyobj/(l.batch*locations*l.n), count);
     }
 }
 
 void backward_region_layer(const region_layer l, network_state state)
 {
-    axpy_cpu(l.batch*l.inputs, 1, l.delta_gpu, 1, state.delta, 1);
-    //copy_cpu(l.batch*l.inputs, l.delta_gpu, 1, state.delta, 1);
+    axpy_cpu(l.batch*l.inputs, 1, l.delta, 1, state.delta, 1);
 }
 
 #ifdef GPU
@@ -137,8 +169,9 @@
     float *in_cpu = calloc(l.batch*l.inputs, sizeof(float));
     float *truth_cpu = 0;
     if(state.truth){
-        truth_cpu = calloc(l.batch*l.outputs, sizeof(float));
-        cuda_pull_array(state.truth, truth_cpu, l.batch*l.outputs);
+        int num_truth = l.batch*l.side*l.side*(1+l.coords+l.classes);
+        truth_cpu = calloc(num_truth, sizeof(float));
+        cuda_pull_array(state.truth, truth_cpu, num_truth);
     }
     cuda_pull_array(state.input, in_cpu, l.batch*l.inputs);
     network_state cpu_state;
@@ -147,7 +180,7 @@
     cpu_state.input = in_cpu;
     forward_region_layer(l, cpu_state);
     cuda_push_array(l.output_gpu, l.output, l.batch*l.outputs);
-    cuda_push_array(l.delta_gpu, l.delta, l.batch*l.outputs);
+    cuda_push_array(l.delta_gpu, l.delta, l.batch*l.inputs);
     free(cpu_state.input);
     if(cpu_state.truth) free(cpu_state.truth);
 }

--
Gitblit v1.10.0