From 5a47c46b39475fc3581b9819f488b977ea1beca3 Mon Sep 17 00:00:00 2001
From: Edmond Yoo <hj3yoo@uwaterloo.ca>
Date: Sun, 16 Sep 2018 03:11:04 +0000
Subject: [PATCH] Moving files from MTGCardDetector

---
 moving/test_files/test17.jpg                                            |    0 
 moving/test_files/test25.jpg                                            |    0 
 moving/test_files/test5.jpg                                             |    0 
 moving/test_files/test18.jpg                                            |    0 
 moving/test_files/test22.png                                            |    0 
 moving/test_files/hand_of_card_ktk.png                                  |    0 
 moving/test_files/test4.jpg                                             |    0 
 moving/setup_train.py                                                   |   28 +
 moving/test_files/test26.jpg                                            |    0 
 moving/test_files/test10.jpg                                            |    0 
 moving/test_files/test23.jpg                                            |    0 
 moving/test_files/hand_of_card_tron.png                                 |    0 
 moving/test_files/test1_yolo_out_py.jpg                                 |    0 
 moving/test_files/image_orig.jpg                                        |    0 
 moving/test_files/pro_tour_table.png                                    |    0 
 moving/test_files/test1.jpg                                             |    0 
 moving/test_files/rtr-174-jarad-golgari-lich-lord.jpg                   |    0 
 moving/test_files/test2.mp4                                             |    0 
 moving/test_files/test3.jpg                                             |    0 
 moving/test_files/li38_handOfCards.jpg                                  |    0 
 moving/test_files/C-12-26-2016-MTG-Klomparens-Article-Images-Hand-2.png |    0 
 moving/test_files/test19.jpg                                            |    0 
 moving/test_files/frilly_0007.jpg                                       |    0 
 moving/test_files/test1.mp4                                             |    0 
 moving/test_files/test24.jpg                                            |    0 
 moving/test_files/hand_of_card_1.png                                    |    0 
 moving/test_files/test11.jpg                                            |    0 
 moving/test_files/test2.jpg                                             |    0 
 moving/test_files/hand_of_card_new_frame_1.webp                         |    0 
 moving/test_files/test9.jpg                                             |    0 
 moving/test_files/handOfCards.jpg                                       |    0 
 moving/test_files/test21.jpg                                            |    0 
 moving/test_files/tilted_card_2.jpg                                     |    0 
 moving/test_files/pro_tour_side.png                                     |    0 
 moving/test_files/mask.png                                              |    0 
 moving/test_files/test12.jpg                                            |    0 
 moving/card_detector.py                                                 |  124 ++++++
 moving/test_files/c16-143-burgeoning.png                                |    0 
 moving/fetch_data.py                                                    |  107 +++++
 moving/test_files/cn2-78-queen-marchesa.png                             |    0 
 moving/test_files/test8.jpg                                             |    0 
 moving/generate_data.py                                                 |  229 ++++++++++++
 moving/test_files/hand_of_card_green_2.jpeg                             |    0 
 moving/test_files/test13.jpg                                            |    0 
 moving/test_files/tilted_card_1.jpg                                     |    0 
 moving/test_files/hand_of_card_red.jpeg                                 |    0 
 moving/test_files/card_in_plastic_case.jpg                              |    0 
 moving/test_files/test15.jpg                                            |    0 
 moving/test_files/test7.jpg                                             |    0 
 moving/test_files/hand_of_card_one_hand.jpg                             |    0 
 moving/test_files/test.jpg                                              |    0 
 moving/test_files/s-l300.jpg                                            |    0 
 moving/test_files/test14.jpg                                            |    0 
 moving/test_files/test27.jpg                                            |    0 
 moving/test_files/hand_of_card_easy.jpg                                 |    0 
 moving/test_files/hand_of_card_green_1.jpg                              |    0 
 moving/test_files/test16.jpg                                            |    0 
 moving/test_files/test20.jpg                                            |    0 
 moving/test_files/test6.jpg                                             |    0 
 moving/transform_data.py                                                |  567 +++++++++++++++++++++++++++++++
 60 files changed, 1,055 insertions(+), 0 deletions(-)

diff --git a/moving/card_detector.py b/moving/card_detector.py
new file mode 100644
index 0000000..aa8bd6a
--- /dev/null
+++ b/moving/card_detector.py
@@ -0,0 +1,124 @@
+import cv2
+import numpy as np
+import pandas as pd
+import math
+from screeninfo import get_monitors
+
+
+def detect_a_card(img, thresh_val=80, blur_radius=None, dilate_radius=None, min_hyst=80, max_hyst=200,
+                  min_line_length=None, max_line_gap=None, debug=False):
+    dim_img = (len(img[0]), len(img)) # (width, height)
+    # Intermediate variables
+
+    # Default values
+    if blur_radius is None:
+        blur_radius = math.floor(min(dim_img) / 100 + 0.5) // 2 * 2 + 1  # Rounded to the nearest odd
+    if dilate_radius is None:
+        dilate_radius = math.floor(min(dim_img) / 67 + 0.5)
+    if min_line_length is None:
+        min_line_length = min(dim_img) / 10
+    if max_line_gap is None:
+        max_line_gap = min(dim_img) / 10
+
+    thresh_radius = math.floor(min(dim_img) / 20 + 0.5) // 2 * 2 + 1  # Rounded to the nearest odd
+
+    img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
+    # Median blur better removes background textures than Gaussian blur
+    img_blur = cv2.medianBlur(img_gray, blur_radius)
+    # Truncate the bright area while detecting the border
+    img_thresh = cv2.adaptiveThreshold(img_blur, 255, cv2.ADAPTIVE_THRESH_MEAN_C,
+                                       cv2.THRESH_BINARY_INV, thresh_radius, 20)
+    #_, img_thresh = cv2.threshold(img_blur, thresh_val, 255, cv2.THRESH_TRUNC)
+
+    # Dilate the image to emphasize thick borders around the card
+    kernel_dilate = np.ones((dilate_radius, dilate_radius), np.uint8)
+    #img_dilate = cv2.dilate(img_thresh, kernel_dilate, iterations=1)
+    img_dilate = cv2.erode(img_thresh, kernel_dilate, iterations=1)
+
+    img_contour = img_dilate.copy()
+    _, contours, _ = cv2.findContours(img_contour, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
+    img_contour = cv2.cvtColor(img_contour, cv2.COLOR_GRAY2BGR)
+    img_contour = cv2.drawContours(img_contour, contours, -1, (128, 128, 128), 1)
+    card_found = contours is not None
+    print(len(contours))
+    print([len(contour) for contour in contours])
+
+    # find the biggest area
+    c = max(contours, key=cv2.contourArea)
+
+    x, y, w, h = cv2.boundingRect(c)
+    # draw the book contour (in green)
+    img_contour = cv2.drawContours(img_contour, [c], -1, (0, 255, 0), 1)
+
+    # Canny edge - low minimum hysteresis to detect glowed area,
+    # and high maximum hysteresis to compensate for high false positives.
+    img_canny = cv2.Canny(img_dilate, min_hyst, max_hyst)
+    #img_canny = img_dilate
+    # Apply Hough transformation to detect the edges
+    detected_lines = cv2.HoughLinesP(img_dilate, 1, np.pi / 180, threshold=60,
+                                     minLineLength=min_line_length,
+                                     maxLineGap=max_line_gap)
+    card_found = detected_lines is not None
+    print(len(detected_lines))
+
+    if card_found:
+        if debug:
+            img_hough = cv2.cvtColor(img_dilate.copy(), cv2.COLOR_GRAY2BGR)
+            for line in detected_lines:
+                x1, y1, x2, y2 = line[0]
+                cv2.line(img_hough, (x1, y1), (x2, y2), (0, 0, 255), 1)
+    elif not debug:
+        print('Hough couldn\'t find any lines')
+
+    # Debug: display intermediate results from various steps
+    if debug:
+        img_blank = np.zeros((len(img), len(img[0]), 3), np.uint8)
+        img_thresh = cv2.cvtColor(img_thresh, cv2.COLOR_GRAY2BGR)
+        img_dilate = cv2.cvtColor(img_dilate, cv2.COLOR_GRAY2BGR)
+        #img_canny = cv2.cvtColor(img_canny, cv2.COLOR_GRAY2BGR)
+        if not card_found:
+            img_hough = img_blank
+
+        # Append all images together
+        img_row_1 = np.concatenate((img, img_thresh), axis=1)
+        img_row_2 = np.concatenate((img_contour, img_hough), axis=1)
+        img_result = np.concatenate((img_row_1, img_row_2), axis=0)
+
+        # Resize the final image to fit into the main monitor's resolution
+        screen_size = get_monitors()[0]
+        resize_ratio = max(len(img_result[0]) / screen_size.width, len(img_result) / screen_size.height, 1)
+        img_result = cv2.resize(img_result, (int(len(img_result[0]) // resize_ratio),
+                                             int(len(img_result) // resize_ratio)))
+        cv2.imshow('Result', img_result)
+        cv2.waitKey(0)
+
+    # TODO: output meaningful data
+    return card_found
+
+def main():
+    img_test = cv2.imread('data/li38_handOfCards.jpg')
+    card_found = detect_a_card(img_test,
+                               #dilate_radius=5,
+                               #thresh_val=100,
+                               #min_hyst=40,
+                               #max_hyst=160,
+                               #min_line_length=50,
+                               #max_line_gap=100,
+                               debug=True)
+    if card_found:
+        return
+    return
+    for dilate_radius in range(1, 6):
+        for min_hyst in range(50, 91, 10):
+            for max_hyst in range(180, 119, -20):
+                print('dilate_radius=%d, min_hyst=%d, max_hyst=%d: ' % (dilate_radius, min_hyst, max_hyst),
+                      end='', flush=True)
+                card_found = detect_a_card(img_test, dilate_radius=dilate_radius,
+                                           min_hyst=min_hyst, max_hyst=max_hyst, debug=True)
+                if card_found:
+                    print('Card found')
+                else:
+                    print('Not found')
+
+if __name__ == '__main__':
+    main()
diff --git a/moving/fetch_data.py b/moving/fetch_data.py
new file mode 100644
index 0000000..221e16c
--- /dev/null
+++ b/moving/fetch_data.py
@@ -0,0 +1,107 @@
+from urllib import request
+import ast
+import json
+import pandas as pd
+import re
+import os
+import transform_data
+import time
+
+all_set_list = ['cmd', 'bfz', 'all', 'ulg',
+                'mrd', 'dst', '5dn', 'chk', 'bok', 'sok', 'rav', 'gpt', 'dis', 'csp', 'tsp', 'plc', 'fut',
+                '10e', 'lrw', 'mor', 'shm', 'eve', 'ala', 'con', 'arb', 'm10', 'zen', 'wwk', 'roe', 'm11', 'som', 'mbs',
+                'nph', 'm12', 'isd', 'dka', 'avr', 'm13', 'rtr', 'gtc', 'dgm', 'm14', 'ths', 'bng', 'jou']
+
+
+def fetch_all_cards_text(url='https://api.scryfall.com/cards/search?q=layout:normal+format:modern+lang:en+frame:2003',
+                         csv_name=''):
+    has_more = True
+    cards = []
+    # get cards dataset as a json from the query
+    while has_more:
+        res_file_dir, http_message = request.urlretrieve(url)
+        with open(res_file_dir, 'r') as res_file:
+            res_json = json.loads(res_file.read())
+            cards += res_json['data']
+            has_more = res_json['has_more']
+            if has_more:
+                url = res_json['next_page']
+            print(len(cards))
+
+    # Convert them into a dataframe, and truncate unnecessary columns
+    df = pd.DataFrame.from_dict(cards)
+
+    if csv_name != '':
+        df = df[['artist', 'border_color', 'collector_number', 'color_identity', 'colors', 'flavor_text', 'image_uris',
+                 'mana_cost', 'legalities', 'name', 'oracle_text', 'rarity', 'type_line', 'set', 'set_name', 'power',
+                 'toughness']]
+        #df.to_json(csv_name)
+        df.to_csv(csv_name, sep=';')  # Comma doesn't work, since some columns are saved as a dict
+
+    return df
+
+
+def load_all_cards_text(csv_name):
+    #with open(csv_name, 'r') as json_file:
+    #    cards = json.loads(json_file.read())
+    #df = pd.DataFrame.from_dict(cards)
+    df = pd.read_csv(csv_name, sep=';')
+    return df
+
+
+# Pulled from Django framework (https://github.com/django/django/blob/master/django/utils/text.py)
+def get_valid_filename(s):
+    """
+    Return the given string converted to a string that can be used for a clean
+    filename. Remove leading and trailing spaces; convert other spaces to
+    underscores; and remove anything that is not an alphanumeric, dash,
+    underscore, or dot.
+    >>> get_valid_filename("john's portrait in 2004.jpg")
+    'johns_portrait_in_2004.jpg'
+    """
+    s = str(s).strip().replace(' ', '_')
+    return re.sub(r'(?u)[^-\w.]', '', s)
+
+
+def fetch_all_cards_image(df, out_dir='', size='png'):
+    if isinstance(df, pd.Series):
+        fetch_card_image(df, out_dir, size)
+    else:
+        for ind, row in df.iterrows():
+            fetch_card_image(row, out_dir, size)
+
+
+def fetch_card_image(row, out_dir='', size='png'):
+    if isinstance(row['image_uris'], str):  # For some reason, dict isn't being parsed in the previous step
+        png_url = ast.literal_eval(row['image_uris'])[size]
+    else:
+        png_url = row['image_uris'][size]
+    if out_dir == '':
+        out_dir = 'data/%s/%s' % (size, row['set'])
+    if not os.path.exists(out_dir):
+        os.makedirs(out_dir)
+    img_name = '%s/%s_%s.png' % (out_dir, row['collector_number'], get_valid_filename(row['name']))
+    if not os.path.isfile(img_name):
+        request.urlretrieve(png_url, filename=img_name)
+        print(img_name)
+
+
+def main():
+    for set_name in all_set_list:
+        csv_name = '%s/csv/%s.csv' % (transform_data.data_dir, set_name)
+        print(csv_name)
+        if not os.path.isfile(csv_name):
+            df = fetch_all_cards_text(url='https://api.scryfall.com/cards/search?q=set:%s+lang:en'
+                                          % set_name, csv_name=csv_name)
+        else:
+            df = load_all_cards_text(csv_name)
+        time.sleep(1)
+        #fetch_all_cards_image(df, out_dir='../usb/data/png/%s' % set_name)
+    #df = fetch_all_cards_text(url='https://api.scryfall.com/cards/search?q=layout:normal+lang:en+frame:2003',
+    #                          csv_name='data/csv/all.csv')
+    pass
+
+
+if __name__ == '__main__':
+    main()
+    pass
diff --git a/moving/generate_data.py b/moving/generate_data.py
new file mode 100644
index 0000000..7a2ce87
--- /dev/null
+++ b/moving/generate_data.py
@@ -0,0 +1,229 @@
+from glob import glob
+import matplotlib.pyplot as plt
+import matplotlib.image as mpimage
+import pickle
+import math
+import random
+import os
+import re
+import cv2
+import fetch_data
+import sys
+import numpy as np
+import pandas as pd
+import transform_data
+
+# Referenced from geaxgx's playing-card-detection: https://github.com/geaxgx/playing-card-detection
+class Backgrounds:
+    def __init__(self, images=None, dumps_dir='data/dtd/images'):
+        if images is not None:
+            self._images = images
+        else:  # load from pickle
+            if not os.path.exists(dumps_dir):
+                print('Warning: directory for dump %s doesn\'t exist' % dumps_dir)
+                return
+            self._images = []
+            for dump_name in glob(dumps_dir + '/*.pck'):
+                with open(dump_name, 'rb') as dump:
+                    print('Loading ' + dump_name)
+                    images = pickle.load(dump)
+                    self._images += images
+            if len(self._images) == 0:
+                self._images = load_dtd()
+        print('# of images loaded: %d' % len(self._images))
+
+    def get_random(self, display=False):
+        bg = self._images[random.randint(0, len(self._images) - 1)]
+        if display:
+            plt.show(bg)
+        return bg
+
+
+def load_dtd(dtd_dir='data/dtd/images', dump_it=True, dump_batch_size=1000):
+    if not os.path.exists(dtd_dir):
+        print('Warning: directory for DTD 5s doesn\'t exist.' % dtd_dir)
+        print('You can download the dataset using this command:'
+              '!wget https://www.robots.ox.ac.uk/~vgg/data/dtd/download/dtd-r1.0.1.tar.gz')
+        return []
+    bg_images = []
+    # Search the directory for all images, and append them
+    for subdir in glob(dtd_dir + "/*"):
+        for f in glob(subdir + "/*.jpg"):
+            bg_images.append(mpimage.imread(f))
+    print("# of images loaded :", len(bg_images))
+
+    # Save them as a pickle if necessary
+    if dump_it:
+        for i in range(math.ceil(len(bg_images) / dump_batch_size)):
+            dump_name = '%s/dtd_dump_%d.pck' % (dtd_dir, i)
+            with open(dump_name, 'wb') as dump:
+                print('Dumping ' + dump_name)
+                pickle.dump(bg_images[i * dump_batch_size:(i + 1) * dump_batch_size], dump)
+
+    return bg_images
+
+
+def apply_bounding_box(img, card_info, display=False):
+    # List of detected objects to be fed into the neural net
+    # The first object is the entire card
+    detected_object_list = [transform_data.ExtractedObject('card', [(0, 0), (len(img[0]), 0), (len(img[0]), len(img)), (0, len(img))])]
+    '''
+    # Mana symbol - They are located on the top right side of the card, next to the name
+    # Their position is stationary, and is right-aligned.
+    has_mana_cost = isinstance(card_info['mana_cost'], str)  # Cards with no mana cost will have nan
+    if has_mana_cost:
+        mana_cost = re.findall('\{(.*?)\}', card_info['mana_cost'])
+        x_anchor = 683
+        y_anchor = 65
+
+        # Cards with specific type or from old sets have their symbol at a different position
+        if card_info['set'] in ['8ed', 'mrd', 'dst', '5dn']:
+            y_anchor -= 2
+
+        for i in reversed(range(len(mana_cost))):
+            # Hybrid mana symbol are larger than a normal symbol
+            is_hybrid = '/' in mana_cost[i]
+            if is_hybrid:
+                x1 = x_anchor - 47
+                x2 = x_anchor + 2
+                y1 = y_anchor - 8
+                y2 = y_anchor + 43
+                x_anchor -= 45
+            else:
+                x1 = x_anchor - 39
+                x2 = x_anchor
+                y1 = y_anchor
+                y2 = y_anchor + 43
+                x_anchor -= 37
+            # Append them to the list of bounding box with the appropriate label
+            symbol_name = 'mana_symbol:' + mana_cost[i]
+            key_pts = [(x1, y1), (x2, y1), (x2, y2), (x1, y2)]
+            detected_object_list.append(transform_data.ExtractedObject(symbol_name, key_pts))
+
+            if display:
+                img_symbol = img[y1:y2, x1:x2]
+                cv2.imshow('symbol', img_symbol)
+                cv2.waitKey(0)
+
+    # Set symbol - located on the right side of the type box in the centre of the card, next to the card type
+    # Only one symbol exists, and its colour varies by rarity.
+    if card_info['set'] in ['8ed']:
+        x1 = 622
+        x2 = 670
+    elif card_info['set'] in ['mrd', 'm10', 'm11', 'm12', 'm13', 'm14']:
+        x1 = 602
+        x2 = 684
+    elif card_info['set'] in ['dst']:
+        x1 = 636
+        x2 = 673
+    elif card_info['set'] in ['5dn']:
+        x1 = 630
+        x2 = 675
+    elif card_info['set'] in ['bok', 'rtr']:
+        x1 = 633
+        x2 = 683
+    elif card_info['set'] in ['sok', 'mbs']:
+        x1 = 638
+        x2 = 683
+    elif card_info['set'] in ['rav']:
+        x1 = 640
+        x2 = 678
+    elif card_info['set'] in ['csp']:
+        x1 = 650
+        x2 = 683
+    elif card_info['set'] in ['tsp', 'lrw', 'zen', 'wwk', 'ths']:
+        x1 = 640
+        x2 = 683
+    elif card_info['set'] in ['plc', 'fut', 'shm', 'eve']:
+        x1 = 625
+        x2 = 685
+    elif card_info['set'] in ['10e']:
+        x1 = 623
+        x2 = 680
+    elif card_info['set'] in ['mor', 'roe', 'bng']:
+        x1 = 637
+        x2 = 687
+    elif card_info['set'] in ['ala', 'arb']:
+        x1 = 635
+        x2 = 680
+    elif card_info['set'] in ['nph']:
+        x1 = 642
+        x2 = 678
+    elif card_info['set'] in ['gtc']:
+        x1 = 610
+        x2 = 683
+    elif card_info['set'] in ['dgm']:
+        x1 = 618
+        x2 = 678
+    else:
+        x1 = 630
+        x2 = 683
+    y1 = 589
+    y2 = 636
+    # Append them to the list of bounding box with the appropriate label
+    symbol_name = 'set_symbol:' + card_info['set']
+    key_pts = [(x1, y1), (x2, y1), (x2, y2), (x1, y2)]
+    detected_object_list.append(transform_data.ExtractedObject(symbol_name, key_pts))
+
+    if display:
+        img_symbol = img[y1:y2, x1:x2]
+        cv2.imshow('symbol', img_symbol)
+        cv2.waitKey(0)
+
+    # Name box - The long bar on the top with card name and mana symbols
+    # TODO
+
+    # Type box - The long bar on the middle with card type and set symbols
+    # TODO
+
+    # Image box - the large image on the top half of the card
+    # TODO
+    '''
+    return detected_object_list
+
+
+def main():
+    random.seed()
+    #bg_images = load_dtd()
+    #bg = Backgrounds()
+    #bg.get_random(display=True)
+
+    card_pool = pd.DataFrame()
+    for set_name in fetch_data.all_set_list:
+        df = fetch_data.load_all_cards_text('data/csv/%s.csv' % set_name)
+        #for _ in range(3):
+        #    card_info = df.iloc[random.randint(0, df.shape[0] - 1)]
+        #    # Currently ignoring planeswalker cards due to their different card layout
+        #    is_planeswalker = 'Planeswalker' in card_info['type_line']
+        #    if not is_planeswalker:
+        #        card_pool = card_pool.append(card_info)
+        card_pool = card_pool.append(df)
+    '''
+    print(card_pool)
+    mana_symbol_set = set()
+    for _, card_info in card_pool.iterrows():
+        has_mana_cost = isinstance(card_info['mana_cost'], str)
+        if has_mana_cost:
+            mana_cost = re.findall('\{(.*?)\}', card_info['mana_cost'])
+            for symbol in mana_cost:
+                mana_symbol_set.add(symbol)
+
+    print(mana_symbol_set)
+    '''
+
+    for _, card_info in card_pool.iterrows():
+        img_name = '../usb/data/png/%s/%s_%s.png' % (card_info['set'], card_info['collector_number'],
+                                                     fetch_data.get_valid_filename(card_info['name']))
+        print(img_name)
+        card_img = cv2.imread(img_name)
+        if card_img is None:
+            fetch_data.fetch_card_image(card_info, out_dir='../usb/data/png/%s' % card_info['set'])
+            card_img = cv2.imread(img_name)
+        detected_object_list = apply_bounding_box(card_img, card_info, display=True)
+        print(detected_object_list)
+
+    return
+
+
+if __name__ == '__main__':
+    main()
diff --git a/moving/setup_train.py b/moving/setup_train.py
new file mode 100644
index 0000000..362be19
--- /dev/null
+++ b/moving/setup_train.py
@@ -0,0 +1,28 @@
+import os
+from glob import glob
+import random
+import transform_data
+
+
+def main():
+    random.seed()
+    data_list = []
+    for subdir in glob('%s/train/*_10' % transform_data.data_dir):
+        for data in glob(subdir + "/*.jpg"):
+            data_list.append(os.path.abspath(data))
+    random.shuffle(data_list)
+
+    test_ratio = 0.1
+    test_list = data_list[:int(test_ratio * len(data_list))]
+    train_list = data_list[int(test_ratio * len(data_list)):]
+    with open('%s/train_10.txt' % transform_data.darknet_dir, 'w') as train_txt:
+        for data in train_list:
+            train_txt.write(data + '\n')
+    with open('%s/test_10.txt' % transform_data.darknet_dir, 'w') as test_txt:
+        for data in test_list:
+            test_txt.write(data + '\n')
+    return
+
+
+if __name__ == '__main__':
+    main()
diff --git a/moving/test_files/C-12-26-2016-MTG-Klomparens-Article-Images-Hand-2.png b/moving/test_files/C-12-26-2016-MTG-Klomparens-Article-Images-Hand-2.png
new file mode 100644
index 0000000..09cc0b3
--- /dev/null
+++ b/moving/test_files/C-12-26-2016-MTG-Klomparens-Article-Images-Hand-2.png
Binary files differ
diff --git a/moving/test_files/c16-143-burgeoning.png b/moving/test_files/c16-143-burgeoning.png
new file mode 100644
index 0000000..0a5baba
--- /dev/null
+++ b/moving/test_files/c16-143-burgeoning.png
Binary files differ
diff --git a/moving/test_files/card_in_plastic_case.jpg b/moving/test_files/card_in_plastic_case.jpg
new file mode 100644
index 0000000..e771a5c
--- /dev/null
+++ b/moving/test_files/card_in_plastic_case.jpg
Binary files differ
diff --git a/moving/test_files/cn2-78-queen-marchesa.png b/moving/test_files/cn2-78-queen-marchesa.png
new file mode 100644
index 0000000..aa2b3f7
--- /dev/null
+++ b/moving/test_files/cn2-78-queen-marchesa.png
Binary files differ
diff --git a/moving/test_files/frilly_0007.jpg b/moving/test_files/frilly_0007.jpg
new file mode 100644
index 0000000..5ab39fd
--- /dev/null
+++ b/moving/test_files/frilly_0007.jpg
Binary files differ
diff --git a/moving/test_files/handOfCards.jpg b/moving/test_files/handOfCards.jpg
new file mode 100644
index 0000000..8f8f53e
--- /dev/null
+++ b/moving/test_files/handOfCards.jpg
Binary files differ
diff --git a/moving/test_files/hand_of_card_1.png b/moving/test_files/hand_of_card_1.png
new file mode 100644
index 0000000..8323d5c
--- /dev/null
+++ b/moving/test_files/hand_of_card_1.png
Binary files differ
diff --git a/moving/test_files/hand_of_card_easy.jpg b/moving/test_files/hand_of_card_easy.jpg
new file mode 100644
index 0000000..2b069f5
--- /dev/null
+++ b/moving/test_files/hand_of_card_easy.jpg
Binary files differ
diff --git a/moving/test_files/hand_of_card_green_1.jpg b/moving/test_files/hand_of_card_green_1.jpg
new file mode 100644
index 0000000..13f5b75
--- /dev/null
+++ b/moving/test_files/hand_of_card_green_1.jpg
Binary files differ
diff --git a/moving/test_files/hand_of_card_green_2.jpeg b/moving/test_files/hand_of_card_green_2.jpeg
new file mode 100644
index 0000000..86109fa
--- /dev/null
+++ b/moving/test_files/hand_of_card_green_2.jpeg
Binary files differ
diff --git a/moving/test_files/hand_of_card_ktk.png b/moving/test_files/hand_of_card_ktk.png
new file mode 100644
index 0000000..456ab69
--- /dev/null
+++ b/moving/test_files/hand_of_card_ktk.png
Binary files differ
diff --git a/moving/test_files/hand_of_card_new_frame_1.webp b/moving/test_files/hand_of_card_new_frame_1.webp
new file mode 100644
index 0000000..1eb5b04
--- /dev/null
+++ b/moving/test_files/hand_of_card_new_frame_1.webp
Binary files differ
diff --git a/moving/test_files/hand_of_card_one_hand.jpg b/moving/test_files/hand_of_card_one_hand.jpg
new file mode 100644
index 0000000..bae5d8d
--- /dev/null
+++ b/moving/test_files/hand_of_card_one_hand.jpg
Binary files differ
diff --git a/moving/test_files/hand_of_card_red.jpeg b/moving/test_files/hand_of_card_red.jpeg
new file mode 100644
index 0000000..4469e9f
--- /dev/null
+++ b/moving/test_files/hand_of_card_red.jpeg
Binary files differ
diff --git a/moving/test_files/hand_of_card_tron.png b/moving/test_files/hand_of_card_tron.png
new file mode 100644
index 0000000..b2f569c
--- /dev/null
+++ b/moving/test_files/hand_of_card_tron.png
Binary files differ
diff --git a/moving/test_files/image_orig.jpg b/moving/test_files/image_orig.jpg
new file mode 100644
index 0000000..440ad18
--- /dev/null
+++ b/moving/test_files/image_orig.jpg
Binary files differ
diff --git a/moving/test_files/li38_handOfCards.jpg b/moving/test_files/li38_handOfCards.jpg
new file mode 100644
index 0000000..e7e91be
--- /dev/null
+++ b/moving/test_files/li38_handOfCards.jpg
Binary files differ
diff --git a/moving/test_files/mask.png b/moving/test_files/mask.png
new file mode 100644
index 0000000..1cbae13
--- /dev/null
+++ b/moving/test_files/mask.png
Binary files differ
diff --git a/moving/test_files/pro_tour_side.png b/moving/test_files/pro_tour_side.png
new file mode 100644
index 0000000..759ddf3
--- /dev/null
+++ b/moving/test_files/pro_tour_side.png
Binary files differ
diff --git a/moving/test_files/pro_tour_table.png b/moving/test_files/pro_tour_table.png
new file mode 100644
index 0000000..e02960b
--- /dev/null
+++ b/moving/test_files/pro_tour_table.png
Binary files differ
diff --git a/moving/test_files/rtr-174-jarad-golgari-lich-lord.jpg b/moving/test_files/rtr-174-jarad-golgari-lich-lord.jpg
new file mode 100644
index 0000000..ee26e77
--- /dev/null
+++ b/moving/test_files/rtr-174-jarad-golgari-lich-lord.jpg
Binary files differ
diff --git a/moving/test_files/s-l300.jpg b/moving/test_files/s-l300.jpg
new file mode 100644
index 0000000..819daca
--- /dev/null
+++ b/moving/test_files/s-l300.jpg
Binary files differ
diff --git a/moving/test_files/test.jpg b/moving/test_files/test.jpg
new file mode 100644
index 0000000..233ffa8
--- /dev/null
+++ b/moving/test_files/test.jpg
Binary files differ
diff --git a/moving/test_files/test1.jpg b/moving/test_files/test1.jpg
new file mode 100644
index 0000000..a75278e
--- /dev/null
+++ b/moving/test_files/test1.jpg
Binary files differ
diff --git a/moving/test_files/test1.mp4 b/moving/test_files/test1.mp4
new file mode 100644
index 0000000..114a43c
--- /dev/null
+++ b/moving/test_files/test1.mp4
Binary files differ
diff --git a/moving/test_files/test10.jpg b/moving/test_files/test10.jpg
new file mode 100644
index 0000000..8e9062b
--- /dev/null
+++ b/moving/test_files/test10.jpg
Binary files differ
diff --git a/moving/test_files/test11.jpg b/moving/test_files/test11.jpg
new file mode 100644
index 0000000..b0795f4
--- /dev/null
+++ b/moving/test_files/test11.jpg
Binary files differ
diff --git a/moving/test_files/test12.jpg b/moving/test_files/test12.jpg
new file mode 100644
index 0000000..c2f5de6
--- /dev/null
+++ b/moving/test_files/test12.jpg
Binary files differ
diff --git a/moving/test_files/test13.jpg b/moving/test_files/test13.jpg
new file mode 100644
index 0000000..878cbad
--- /dev/null
+++ b/moving/test_files/test13.jpg
Binary files differ
diff --git a/moving/test_files/test14.jpg b/moving/test_files/test14.jpg
new file mode 100644
index 0000000..bf5094a
--- /dev/null
+++ b/moving/test_files/test14.jpg
Binary files differ
diff --git a/moving/test_files/test15.jpg b/moving/test_files/test15.jpg
new file mode 100644
index 0000000..39f1dd4
--- /dev/null
+++ b/moving/test_files/test15.jpg
Binary files differ
diff --git a/moving/test_files/test16.jpg b/moving/test_files/test16.jpg
new file mode 100644
index 0000000..c514771
--- /dev/null
+++ b/moving/test_files/test16.jpg
Binary files differ
diff --git a/moving/test_files/test17.jpg b/moving/test_files/test17.jpg
new file mode 100644
index 0000000..4ad12f7
--- /dev/null
+++ b/moving/test_files/test17.jpg
Binary files differ
diff --git a/moving/test_files/test18.jpg b/moving/test_files/test18.jpg
new file mode 100644
index 0000000..a0f9390
--- /dev/null
+++ b/moving/test_files/test18.jpg
Binary files differ
diff --git a/moving/test_files/test19.jpg b/moving/test_files/test19.jpg
new file mode 100644
index 0000000..8f3c5a6
--- /dev/null
+++ b/moving/test_files/test19.jpg
Binary files differ
diff --git a/moving/test_files/test1_yolo_out_py.jpg b/moving/test_files/test1_yolo_out_py.jpg
new file mode 100644
index 0000000..e844c9a
--- /dev/null
+++ b/moving/test_files/test1_yolo_out_py.jpg
Binary files differ
diff --git a/moving/test_files/test2.jpg b/moving/test_files/test2.jpg
new file mode 100644
index 0000000..1fceb1f
--- /dev/null
+++ b/moving/test_files/test2.jpg
Binary files differ
diff --git a/moving/test_files/test2.mp4 b/moving/test_files/test2.mp4
new file mode 100644
index 0000000..aa08b4b
--- /dev/null
+++ b/moving/test_files/test2.mp4
Binary files differ
diff --git a/moving/test_files/test20.jpg b/moving/test_files/test20.jpg
new file mode 100644
index 0000000..8717d5f
--- /dev/null
+++ b/moving/test_files/test20.jpg
Binary files differ
diff --git a/moving/test_files/test21.jpg b/moving/test_files/test21.jpg
new file mode 100644
index 0000000..342577c
--- /dev/null
+++ b/moving/test_files/test21.jpg
Binary files differ
diff --git a/moving/test_files/test22.png b/moving/test_files/test22.png
new file mode 100644
index 0000000..179f188
--- /dev/null
+++ b/moving/test_files/test22.png
Binary files differ
diff --git a/moving/test_files/test23.jpg b/moving/test_files/test23.jpg
new file mode 100644
index 0000000..af79a6f
--- /dev/null
+++ b/moving/test_files/test23.jpg
Binary files differ
diff --git a/moving/test_files/test24.jpg b/moving/test_files/test24.jpg
new file mode 100644
index 0000000..937354c
--- /dev/null
+++ b/moving/test_files/test24.jpg
Binary files differ
diff --git a/moving/test_files/test25.jpg b/moving/test_files/test25.jpg
new file mode 100644
index 0000000..6e39077
--- /dev/null
+++ b/moving/test_files/test25.jpg
Binary files differ
diff --git a/moving/test_files/test26.jpg b/moving/test_files/test26.jpg
new file mode 100644
index 0000000..ee83759
--- /dev/null
+++ b/moving/test_files/test26.jpg
Binary files differ
diff --git a/moving/test_files/test27.jpg b/moving/test_files/test27.jpg
new file mode 100644
index 0000000..0ee79be
--- /dev/null
+++ b/moving/test_files/test27.jpg
Binary files differ
diff --git a/moving/test_files/test3.jpg b/moving/test_files/test3.jpg
new file mode 100644
index 0000000..fd1f2cb
--- /dev/null
+++ b/moving/test_files/test3.jpg
Binary files differ
diff --git a/moving/test_files/test4.jpg b/moving/test_files/test4.jpg
new file mode 100644
index 0000000..1f2ffc6
--- /dev/null
+++ b/moving/test_files/test4.jpg
Binary files differ
diff --git a/moving/test_files/test5.jpg b/moving/test_files/test5.jpg
new file mode 100644
index 0000000..f9e8a1f
--- /dev/null
+++ b/moving/test_files/test5.jpg
Binary files differ
diff --git a/moving/test_files/test6.jpg b/moving/test_files/test6.jpg
new file mode 100644
index 0000000..1454673
--- /dev/null
+++ b/moving/test_files/test6.jpg
Binary files differ
diff --git a/moving/test_files/test7.jpg b/moving/test_files/test7.jpg
new file mode 100644
index 0000000..82dfb3c
--- /dev/null
+++ b/moving/test_files/test7.jpg
Binary files differ
diff --git a/moving/test_files/test8.jpg b/moving/test_files/test8.jpg
new file mode 100644
index 0000000..2d480ce
--- /dev/null
+++ b/moving/test_files/test8.jpg
Binary files differ
diff --git a/moving/test_files/test9.jpg b/moving/test_files/test9.jpg
new file mode 100644
index 0000000..c8b0f53
--- /dev/null
+++ b/moving/test_files/test9.jpg
Binary files differ
diff --git a/moving/test_files/tilted_card_1.jpg b/moving/test_files/tilted_card_1.jpg
new file mode 100644
index 0000000..e973651
--- /dev/null
+++ b/moving/test_files/tilted_card_1.jpg
Binary files differ
diff --git a/moving/test_files/tilted_card_2.jpg b/moving/test_files/tilted_card_2.jpg
new file mode 100644
index 0000000..d1edf41
--- /dev/null
+++ b/moving/test_files/tilted_card_2.jpg
Binary files differ
diff --git a/moving/transform_data.py b/moving/transform_data.py
new file mode 100644
index 0000000..9952a99
--- /dev/null
+++ b/moving/transform_data.py
@@ -0,0 +1,567 @@
+import os
+import random
+import math
+import cv2
+import numpy as np
+import imutils
+import pandas as pd
+import fetch_data
+import generate_data
+from shapely import geometry
+import pytesseract
+import imgaug as ia
+from imgaug import augmenters as iaa
+from imgaug import parameters as iap
+
+card_mask = cv2.imread('data/mask.png')
+data_dir = os.path.abspath('/media/win10/data')
+darknet_dir = os.path.abspath('darknet')
+
+
+def key_pts_to_yolo(key_pts, w_img, h_img):
+    """
+    Convert a list of keypoints into a yolo training format
+    :param key_pts: list of keypoints
+    :param w_img: width of the entire image
+    :param h_img: height of the entire image
+    :return: <x> <y> <width> <height>
+    """
+    x1 = max(0, min([pt[0] for pt in key_pts]))
+    x2 = min(w_img, max([pt[0] for pt in key_pts]))
+    y1 = max(0, min([pt[1] for pt in key_pts]))
+    y2 = min(h_img, max([pt[1] for pt in key_pts]))
+    x = (x2 + x1) / 2 / w_img
+    y = (y2 + y1) / 2 / h_img
+    width = (x2 - x1) / w_img
+    height = (y2 - y1) / h_img
+    return x, y, width, height
+
+
+class ImageGenerator:
+    """
+    A template for generating a training image.
+    """
+    def __init__(self, img_bg, class_ids, width, height, skew=None, cards=None):
+        """
+        :param img_bg: background (textile) image
+        :param width: width of the training image
+        :param height: height of the training image
+        :param skew: 4 coordinates that indicates the corners (in normalized form) for perspective transform
+        :param cards: list of Card objects
+        """
+        self.img_bg = img_bg
+        self.class_ids = class_ids
+        self.img_result = None
+        self.width = width
+        self.height = height
+        if cards is None:
+            self.cards = []
+        else:
+            self.cards = cards
+
+        # Compute transform matrix for perspective transform
+        if skew is not None:
+            orig_corner = np.array([[0, 0], [0, height], [width, height], [width, 0]], dtype=np.float32)
+            new_corner = np.array([[width * s[0], height * s[1]] for s in skew], dtype=np.float32)
+            self.M = cv2.getPerspectiveTransform(orig_corner, new_corner)
+            pass
+        else:
+            self.M = None
+        pass
+
+    def add_card(self, card, x=None, y=None, theta=0.0, scale=1.0):
+        """
+        Add a card to this generator scenario.
+        :param card: card to be added
+        :param x: new X-coordinate for the centre of the card
+        :param y: new Y-coordinate for the centre of the card
+        :param theta: new angle for the card
+        :param scale: new scale for the card
+        :return: none
+        """
+        if x is None:
+            x = -len(card.img[0]) / 2
+        if y is None:
+            y = -len(card.img) / 2
+        self.cards.append(card)
+        card.x = x
+        card.y = y
+        card.theta = theta
+        card.scale = scale
+        pass
+
+    def render(self, visibility=0.5, display=False, debug=False, aug=None):
+        """
+        Display the current state of the generator
+        :return: none
+        """
+        self.check_visibility(visibility=visibility)
+        #img_result = cv2.resize(self.img_bg, (self.width, self.height))
+        img_result = np.zeros((self.height, self.width, 3), dtype=np.uint8)
+
+        for card in self.cards:
+            if card.x == 0.0 and card.y == 0.0 and card.theta == 0.0 and card.scale == 1.0:
+                continue
+            card_x = int(card.x + 0.5)
+            card_y = int(card.y + 0.5)
+            #print(card_x, card_y, card.theta, card.scale)
+
+            # Scale & rotate card image
+            img_card = cv2.resize(card.img, (int(len(card.img[0]) * card.scale), int(len(card.img) * card.scale)))
+            if aug is not None:
+                seq = iaa.Sequential([
+                    iaa.SimplexNoiseAlpha(first=iaa.Add(random.randrange(128)), size_px_max=[1, 3],
+                                          upscale_method="cubic"),  # Lighting
+                ])
+                img_card = seq.augment_image(img_card)
+            mask_scale = cv2.resize(card_mask, (int(len(card_mask[0]) * card.scale), int(len(card_mask) * card.scale)))
+            img_mask = cv2.bitwise_and(img_card, mask_scale)
+            img_rotate = imutils.rotate_bound(img_mask, card.theta / math.pi * 180)
+            
+            # Calculate the position of the card image in relation to the background
+            # Crop the card image if it's out of boundary
+            card_w = len(img_rotate[0])
+            card_h = len(img_rotate)
+            card_crop_x1 = max(0, card_w // 2 - card_x)
+            card_crop_x2 = min(card_w, card_w // 2 + len(img_result[0]) - card_x)
+            card_crop_y1 = max(0, card_h // 2 - card_y)
+            card_crop_y2 = min(card_h, card_h // 2 + len(img_result) - card_y)
+            img_card_crop = img_rotate[card_crop_y1:card_crop_y2, card_crop_x1:card_crop_x2]
+
+            # Calculate the position of the corresponding area in the background
+            bg_crop_x1 = max(0, card_x - (card_w // 2))
+            bg_crop_x2 = min(len(img_result[0]), int(card_x + (card_w / 2) + 0.5))
+            bg_crop_y1 = max(0, card_y - (card_h // 2))
+            bg_crop_y2 = min(len(img_result), int(card_y + (card_h / 2) + 0.5))
+            img_result_crop = img_result[bg_crop_y1:bg_crop_y2, bg_crop_x1:bg_crop_x2]
+
+            # Override the background with the current card
+            img_result_crop = np.where(img_card_crop, img_card_crop, img_result_crop)
+            img_result[bg_crop_y1:bg_crop_y2, bg_crop_x1:bg_crop_x2] = img_result_crop
+            
+            if debug:
+                for ext_obj in card.objects:
+                    if ext_obj.visible:
+                        for pt in ext_obj.key_pts:
+                            cv2.circle(img_result, card.coordinate_in_generator(pt[0], pt[1]), 2, (1, 1, 255), 10)
+                        bounding_box = card.bb_in_generator(ext_obj.key_pts)
+                        cv2.rectangle(img_result, bounding_box[0], bounding_box[2], (1, 255, 1), 5)
+
+        '''
+        try:
+            text = pytesseract.image_to_string(img_result, output_type=pytesseract.Output.DICT)
+            print(text)
+        except pytesseract.pytesseract.TesseractError:
+            pass
+        '''
+        img_result = cv2.GaussianBlur(img_result, (5, 5), 0)
+
+        if self.M is not None:
+            img_result = cv2.warpPerspective(img_result, self.M, (self.width, self.height))
+            if debug:
+                for card in self.cards:
+                    for ext_obj in card.objects:
+                        if ext_obj.visible:
+                            new_pts = np.array([[list(card.coordinate_in_generator(pt[0], pt[1]))]
+                                                for pt in ext_obj.key_pts], dtype=np.float32)
+                            new_pts = cv2.perspectiveTransform(new_pts, self.M)
+                            for pt in new_pts:
+                                cv2.circle(img_result, (pt[0][0], pt[0][1]), 2, (255, 1, 1), 10)
+
+        img_bg = cv2.resize(self.img_bg, (self.width, self.height))
+        img_result = np.where(img_result, img_result, img_bg)
+
+        if aug is not None:
+            img_result = aug.augment_image(img_result)
+
+        if display:
+            cv2.imshow('Result', img_result)
+            cv2.waitKey(0)
+
+        self.img_result = img_result
+        pass
+
+    def generate_horizontal_span(self, gap=None, scale=None, theta=0, shift=None, jitter=None):
+        """
+        Generating the first scenario where the cards are laid out in a straight horizontal line
+        :return: True if successfully generated, otherwise False
+        """
+        # Set scale of the cards, variance of shift & jitter to be applied if they're not given
+        card_size = (len(self.cards[0].img[0]), len(self.cards[0].img))
+        if scale is None:
+            # Scale the cards so that card takes about 50% of the image's height
+            coverage_ratio = 0.5
+            scale = self.height * coverage_ratio / card_size[1]
+        if shift is None:
+            # Plus minus 5% of the card's height
+            shift = [-card_size[1] * scale * 0.05, card_size[1] * scale * 0.05]
+            pass
+        if jitter is None:
+            jitter = [-math.pi / 18, math.pi / 18]  # Plus minus 10 degrees
+        if gap is None:
+            # 25% of the card's width - set symbol and 1-2 mana symbols will be visible on each card
+            gap = card_size[0] * scale * 0.4
+
+        # Determine the location of the first card
+        # The cards will cover (width of a card + (# of cards - 1) * gap) pixels wide and (height of a card) pixels high
+        x_anchor = int(self.width / 2 + (len(self.cards) - 1) * gap / 2)
+        y_anchor = self.height // 2
+        for card in self.cards:
+            card.scale = scale
+            card.x = x_anchor
+            card.y = y_anchor
+            card.theta = 0
+            card.shift(shift, shift)
+            card.rotate(jitter)
+            card.rotate(theta, centre=(self.width // 2 - x_anchor, self.height // 2 - y_anchor))
+            x_anchor -= gap
+
+        return True
+
+    def generate_vertical_span(self, gap=None, scale=None, theta=0, shift=None, jitter=None):
+        """
+        Generating the second scenario where the cards are laid out in a straight vertical line
+        :return: True if successfully generated, otherwise False
+        """
+        # Set scale of the cards, variance of shift & jitter to be applied if they're not given
+        card_size = (len(self.cards[0].img[0]), len(self.cards[0].img))
+        if scale is None:
+            # Scale the cards so that card takes about 50% of the image's height
+            coverage_ratio = 0.5
+            scale = self.height * coverage_ratio / card_size[1]
+        if shift is None:
+            # Plus minus 5% of the card's height
+            shift = [-card_size[1] * scale * 0.05, card_size[1] * scale * 0.05]
+            pass
+        if jitter is None:
+            # Plus minus 5 degrees
+            jitter = [-math.pi / 36, math.pi / 36]
+        if gap is None:
+            # 15% of the card's height - the title bar (with mana symbols) will be visible
+            gap = card_size[1] * scale * 0.25
+
+        # Determine the location of the first card
+        # The cards will cover (width of a card) pixels wide and (height of a card + (# of cards - 1) * gap) pixels high
+        x_anchor = self.width // 2
+        y_anchor = int(self.height / 2 - (len(self.cards) - 1) * gap / 2)
+        for card in self.cards:
+            card.scale = scale
+            card.x = x_anchor
+            card.y = y_anchor
+            card.theta = 0
+            card.shift(shift, shift)
+            card.rotate(jitter)
+            card.rotate(theta, centre=(self.width // 2 - x_anchor, self.height // 2 - y_anchor))
+            y_anchor += gap
+        return True
+
+    def generate_fan_out(self, centre, theta_between_cards=None, scale=None, shift=None, jitter=None):
+        """
+        Generating the third scenario where the cards are laid out in a fan shape
+        :return: True if successfully generated, otherwise False
+        """
+        return False
+
+    def generate_non_obstructive(self, tolerance=0.90, scale=None):
+        """
+        Generating the fourth scenario where the cards are laid in arbitrary position that doesn't obstruct other cards
+        :param tolerance: minimum level of visibility for each cards
+        :return: True if successfully generated, otherwise False
+        """
+        card_size = (len(self.cards[0].img[0]), len(self.cards[0].img))
+        if scale is None:
+            # Total area of the cards should cover about 25-40% of the entire image, depending on the number of cards
+            scale = math.sqrt(self.width * self.height * min(0.25 + 0.02 * len(self.cards), 0.4)
+                              / (card_size[0] * card_size[1] * len(self.cards)))
+        # Position each card at random location that doesn't obstruct other cards
+        i = 0
+        while i < len(self.cards):
+        #for i in range(len(self.cards)):
+            card = self.cards[i]
+            card.scale = scale
+            rep = 0
+            while True:
+                card.x = random.uniform(card_size[1] * scale / 2, self.width - card_size[1] * scale)
+                card.y = random.uniform(card_size[1] * scale / 2, self.height - card_size[1] * scale)
+                card.theta = random.uniform(-math.pi, math.pi)
+                self.check_visibility(self.cards[:i + 1], visibility=tolerance)
+                # This position is not obstructive if all of the cards are visible
+                is_visible = [other_card.objects[0].visible for other_card in self.cards[:i + 1]]
+                non_obstructive = all(is_visible)
+                if non_obstructive:
+                    i += 1
+                    break
+                rep += 1
+                if rep >= 1000:
+                    # Reassign previous card's position
+                    i -= 1
+                    break
+        return True
+
+    def check_visibility(self, cards=None, i_check=None, visibility=0.5):
+        """
+        Check whether if extracted objects in each card are visible in the current scenario, and update their status
+        :param cards: list of cards (in a correct order)
+        :param i_check: indices of cards that needs to be checked. Cards that aren't in this list will only be used
+        to check visibility of other cards. All cards are checked by default.
+        :param visibility: minimum ratio of the object's area that aren't covered by another card to be visible
+        :return: none
+        """
+        if cards is None:
+            cards = self.cards
+        if i_check is None:
+            i_check = range(len(cards))
+        card_poly_list = [geometry.Polygon([card.coordinate_in_generator(0, 0),
+                                            card.coordinate_in_generator(0, len(card.img)),
+                                            card.coordinate_in_generator(len(card.img[0]), len(card.img)),
+                                            card.coordinate_in_generator(len(card.img[0]), 0)]) for card in self.cards]
+        template_poly = geometry.Polygon([(0, 0), (self.width, 0), (self.width, self.height), (0, self.height)])
+
+        # First card in the list is overlaid on the bottom of the card pile
+        for i in i_check:
+            card = cards[i]
+            for ext_obj in card.objects:
+                obj_poly = geometry.Polygon([card.coordinate_in_generator(pt[0], pt[1]) for pt in ext_obj.key_pts])
+                obj_area = obj_poly.area
+                # Check if the other cards are blocking this object or if it's out of the template
+                for card_poly in card_poly_list[i + 1:]:
+                    obj_poly = obj_poly.difference(card_poly)
+                obj_poly = obj_poly.intersection(template_poly)
+                visible_area = obj_poly.area
+                #print(visible_area, obj_area, len(card.img[0]) * len(card.img) * card.scale * card.scale)
+                #print("%s: %.1f visible" % (ext_obj.label, visible_area / obj_area * 100))
+                ext_obj.visible = obj_area * visibility <= visible_area
+
+    def export_training_data(self, out_name, visibility=0.5, aug=None):
+        """
+        Export the generated training image along with the txt file for all bounding boxes
+        :return: none
+        """
+        self.render(visibility, aug=aug)
+        cv2.imwrite(out_name + '.jpg', self.img_result)
+        out_txt = open(out_name+ '.txt', 'w')
+        for card in self.cards:
+            for ext_obj in card.objects:
+                if not ext_obj.visible:
+                    continue
+                coords_in_gen = [card.coordinate_in_generator(key_pt[0], key_pt[1]) for key_pt in ext_obj.key_pts]
+                obj_yolo_info = key_pts_to_yolo(coords_in_gen, self.width, self.height)
+                if ext_obj.label == 'card':
+                    class_id = self.class_ids[card.info['name']]
+                    out_txt.write(str(class_id) + ' %.6f %.6f %.6f %.6f\n' % obj_yolo_info)
+                    pass
+                elif ext_obj.label[:ext_obj.label.find[':']] == 'mana_symbol':
+                    # TODO
+                    pass
+                elif ext_obj.label[:ext_obj.label.find[':']] == 'set_symbol':
+                    # TODO
+                    pass
+        out_txt.close()
+        pass
+
+
+class Card:
+    """
+    A class for storing required information about a card in relation to the ImageGenerator
+    """
+    def __init__(self, img, card_info, objects, x=None, y=None, theta=None, scale=None):
+        """
+        :param img: image of the card
+        :param card_info: details like name, mana cost, type, set, etc
+        :param objects: list of ExtractedObjects like mana & set symbol, etc
+        :param generator: ImageGenerator object that the card is bound to
+        :param x: X-coordinate of the card's centre in relation to the generator
+        :param y: Y-coordinate of the card's centre in relation to the generator
+        :param theta: angle of rotation of the card in relation to the generator
+        :param scale: scale of the card in the generator in relation to the original image
+        """
+        self.img = img
+        self.info = card_info
+        self.objects = objects
+        self.x = x
+        self.y = y
+        self.theta = theta
+        self.scale = scale
+        pass
+
+    def shift(self, x, y):
+        """
+        Apply a X/Y translation on this image
+        :param x: amount of X-translation. If range is given, translate by a random amount within that range
+        :param y: amount of Y-translation. Refer to x when a range is given.
+        :return: none
+        """
+        if isinstance(x, tuple) or (isinstance(x, list) and len(x) == 2):
+            self.x += random.uniform(x[0], x[1])
+        else:
+            self.x += x
+        if isinstance(y, tuple) or (isinstance(y, list) and len(y) == 2):
+            self.y += random.uniform(y[0], y[1])
+        else:
+            self.y += y
+        pass
+
+    def rotate(self, theta, centre=(0, 0)):
+        """
+        Apply a rotation on this image with a centre
+        :param theta: amount of rotation in radian (clockwise). If a range is given, rotate by a random amount within
+        :param centre: coordinate of the centre of the rotation in relation to the centre of this card
+        that range
+        :return: none
+        """
+        if isinstance(theta, tuple) or (isinstance(theta, list) and len(theta) == 2):
+            theta = random.uniform(theta[0], theta[1])
+
+        # If the centre given is the centre of this card, the whole math simplifies a bit
+        # (This still works without the if statement, but let's not do useless trigs if we know the answer already)
+        if centre is not (0, 0):
+            # Rotation math
+            self.x -= -centre[1] * math.sin(theta) + centre[0] * math.cos(theta)
+            self.y -= centre[1] * math.cos(theta) + centre[0] * math.sin(theta)
+
+            # Offset for the coordinate translation
+            self.x += centre[0]
+            self.y += centre[1]
+
+        self.theta += theta
+        pass
+
+    def coordinate_in_generator(self, x, y):
+        """
+        Converting coordinate within the card into the coordinate in the generator it is associated with
+        :param x: x coordinate within the card
+        :param y: y coordinate within the card
+        :return: (x, y) coordinate in the generator
+        """
+        # Relative distance in X & Y axis, if the centre of the card is at the origin (0, 0)
+        rel_x = x - len(self.img[0]) // 2
+        rel_y = y - len(self.img) // 2
+
+        # Scaling
+        rel_x *= self.scale
+        rel_y *= self.scale
+
+        # Rotation
+        rot_x = rel_x - rel_y * math.sin(self.theta) + rel_x * math.cos(self.theta)
+        rot_y = rel_y + rel_y * math.cos(self.theta) + rel_x * math.sin(self.theta)
+
+        # Negate offset
+        rot_x -= rel_x
+        rot_y -= rel_y
+
+        # Shift
+        gen_x = rot_x + self.x
+        gen_y = rot_y + self.y
+
+        return int(gen_x), int(gen_y)
+
+    def bb_in_generator(self, key_pts):
+        """
+        Convert a keypoints of bounding box in card into the coordinate in the generator
+        :param key_pts: keypoints of the bounding box
+        :return: bounding box represented by 4 points in the generator
+        """
+        coords_in_gen = [self.coordinate_in_generator(key_pt[0], key_pt[1]) for key_pt in key_pts]
+        x1 = min([pt[0] for pt in coords_in_gen])
+        x2 = max([pt[0] for pt in coords_in_gen])
+        y1 = min([pt[1] for pt in coords_in_gen])
+        y2 = max([pt[1] for pt in coords_in_gen])
+        '''
+        x1 = -math.inf
+        x2 = math.inf
+        y1 = -math.inf
+        y2 = math.inf
+        for key_pt in key_pts:
+            coord_in_gen = self.coordinate_in_generator(key_pt[0], key_pt[1])
+            x1 = max(x1, coord_in_gen[0])
+            x2 = min(x2, coord_in_gen[0])
+            y1 = max(y1, coord_in_gen[1])
+            y2 = min(y2, coord_in_gen[1])
+        '''
+        return [(x1, y1), (x2, y1), (x2, y2), (x1, y2)]
+
+
+class ExtractedObject:
+    """
+    Simple struct to hold information about an extracted object
+    """
+    def __init__(self, label, key_pts):
+        self.label = label
+        self.key_pts = key_pts
+        self.visible = False
+
+
+def main():
+    random.seed()
+    ia.seed(random.randrange(10000))
+
+    bg_images = generate_data.load_dtd(dtd_dir='%s/dtd/images' % data_dir, dump_it=False)
+    #bg_images = [cv2.imread('data/frilly_0007.jpg')]
+    background = generate_data.Backgrounds(images=bg_images)
+
+    #card_pool = pd.DataFrame()
+    #for set_name in fetch_data.all_set_list:
+    #    df = fetch_data.load_all_cards_text('%s/csv/%s.csv' % (data_dir, set_name))
+    #    card_pool = card_pool.append(df)
+    card_pool = fetch_data.load_all_cards_text('%s/csv/custom.csv' % data_dir)
+    class_ids = {}
+    with open('%s/obj.names' % data_dir) as names_file:
+        class_name_list = names_file.read().splitlines()
+        for i in range(len(class_name_list)):
+            class_ids[class_name_list[i]] = i
+    print(class_ids)
+
+    num_gen = 60000
+    num_iter = 1
+
+    for i in range(num_gen):
+        # Arbitrarily select top left and right corners for perspective transformation
+        # Since the training image are generated with random rotation, don't need to skew all four sides
+        skew = [[random.uniform(0, 0.25), 0], [0, 1], [1, 1],
+                [random.uniform(0.75, 1), 0]]
+        generator = ImageGenerator(background.get_random(), class_ids, 1440, 960, skew=skew)
+        out_name = ''
+        for _, card_info in card_pool.sample(random.randint(2, 5)).iterrows():
+            img_name = '%s/card_img/png/%s/%s_%s.png' % (data_dir, card_info['set'], card_info['collector_number'],
+                                                         fetch_data.get_valid_filename(card_info['name']))
+            out_name += '%s%s_' % (card_info['set'], card_info['collector_number'])
+            card_img = cv2.imread(img_name)
+            if card_img is None:
+                fetch_data.fetch_card_image(card_info, out_dir='%s/card_img/png/%s' % (data_dir, card_info['set']))
+                card_img = cv2.imread(img_name)
+            if card_img is None:
+                print('WARNING: card %s is not found!' % img_name)
+            detected_object_list = generate_data.apply_bounding_box(card_img, card_info)
+            card = Card(card_img, card_info, detected_object_list)
+            generator.add_card(card)
+        for j in range(num_iter):
+            seq = iaa.Sequential([
+                iaa.Multiply((0.8, 1.2)),  # darken / brighten the whole image
+                iaa.SimplexNoiseAlpha(first=iaa.Add(random.randrange(64)), per_channel=0.1, size_px_max=[3, 6],
+                                      upscale_method="cubic"),  # Lighting
+                iaa.AdditiveGaussianNoise(scale=random.uniform(0, 0.05) * 255, per_channel=0.1),  # Noises
+                iaa.Dropout(p=[0, 0.05], per_channel=0.1)
+            ])
+
+            if i % 3 == 0:
+                generator.generate_non_obstructive()
+                generator.export_training_data(visibility=0.0, out_name='%s/train/non_obstructive_10/%s%d'
+                                                                        % (data_dir, out_name, j), aug=seq)
+            elif i % 3 == 1:
+                generator.generate_horizontal_span(theta=random.uniform(-math.pi, math.pi))
+                generator.export_training_data(visibility=0.0, out_name='%s/train/horizontal_span_10/%s%d'
+                                                                        % (data_dir, out_name, j), aug=seq)
+            else:
+                generator.generate_vertical_span(theta=random.uniform(-math.pi, math.pi))
+                generator.export_training_data(visibility=0.0, out_name='%s/train/vertical_span_10/%s%d'
+                                                                        % (data_dir, out_name, j), aug=seq)
+
+            #generator.generate_horizontal_span(theta=random.uniform(-math.pi, math.pi))
+            #generator.render(display=True, aug=seq, debug=True)
+            print('Generated %s%d' % (out_name, j))
+            generator.img_bg = background.get_random()
+    pass
+
+
+if __name__ == '__main__':
+    main()

--
Gitblit v1.10.0