From 5a47c46b39475fc3581b9819f488b977ea1beca3 Mon Sep 17 00:00:00 2001
From: Edmond Yoo <hj3yoo@uwaterloo.ca>
Date: Sun, 16 Sep 2018 03:11:04 +0000
Subject: [PATCH] Moving files from MTGCardDetector

---
 src/batchnorm_layer.c |   88 +++++++++++++++++++++++++++++++++++++-------
 1 files changed, 74 insertions(+), 14 deletions(-)

diff --git a/src/batchnorm_layer.c b/src/batchnorm_layer.c
index 55bd3a8..3fa129d 100644
--- a/src/batchnorm_layer.c
+++ b/src/batchnorm_layer.c
@@ -52,6 +52,12 @@
 
     layer.x_gpu = cuda_make_array(layer.output, layer.batch*layer.outputs);
     layer.x_norm_gpu = cuda_make_array(layer.output, layer.batch*layer.outputs);
+#ifdef CUDNN
+    cudnnCreateTensorDescriptor(&layer.normTensorDesc);
+    cudnnCreateTensorDescriptor(&layer.normDstTensorDesc);
+    cudnnSetTensor4dDescriptor(layer.normDstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, layer.batch, layer.out_c, layer.out_h, layer.out_w);
+    cudnnSetTensor4dDescriptor(layer.normTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, layer.out_c, 1, 1);
+#endif
 #endif
     return layer;
 }
@@ -130,10 +136,10 @@
         mean_cpu(l.output, l.batch, l.out_c, l.out_h*l.out_w, l.mean);
         variance_cpu(l.output, l.mean, l.batch, l.out_c, l.out_h*l.out_w, l.variance);
 
-        scal_cpu(l.out_c, .99, l.rolling_mean, 1);
-        axpy_cpu(l.out_c, .01, l.mean, 1, l.rolling_mean, 1);
-        scal_cpu(l.out_c, .99, l.rolling_variance, 1);
-        axpy_cpu(l.out_c, .01, l.variance, 1, l.rolling_variance, 1);
+        scal_cpu(l.out_c, .9, l.rolling_mean, 1);
+        axpy_cpu(l.out_c, .1, l.mean, 1, l.rolling_mean, 1);
+        scal_cpu(l.out_c, .9, l.rolling_variance, 1);
+        axpy_cpu(l.out_c, .1, l.variance, 1, l.rolling_variance, 1);
 
         copy_cpu(l.outputs*l.batch, l.output, 1, l.x, 1);
         normalize_cpu(l.output, l.mean, l.variance, l.batch, l.out_c, l.out_h*l.out_w);   
@@ -173,12 +179,30 @@
 
 void forward_batchnorm_layer_gpu(layer l, network_state state)
 {
-    if(l.type == BATCHNORM) copy_ongpu(l.outputs*l.batch, state.input, 1, l.output_gpu, 1);
-    if(l.type == CONNECTED){
-        l.out_c = l.outputs;
-        l.out_h = l.out_w = 1;
-    }
+    if (l.type == BATCHNORM) copy_ongpu(l.outputs*l.batch, state.input, 1, l.output_gpu, 1);
+    copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_gpu, 1);
     if (state.train) {
+#ifdef CUDNN
+        float one = 1;
+        float zero = 0;
+        cudnnBatchNormalizationForwardTraining(cudnn_handle(),
+            CUDNN_BATCHNORM_SPATIAL,
+            &one,
+            &zero,
+            l.normDstTensorDesc,
+            l.x_gpu,                // input
+            l.normDstTensorDesc,
+            l.output_gpu,            // output
+            l.normTensorDesc,
+            l.scales_gpu,
+            l.biases_gpu,
+            .01,
+            l.rolling_mean_gpu,        // output (should be FP32)
+            l.rolling_variance_gpu,    // output (should be FP32)
+            .00001,
+            l.mean_gpu,            // output (should be FP32)
+            l.variance_gpu);    // output (should be FP32)
+#else
         fast_mean_gpu(l.output_gpu, l.batch, l.out_c, l.out_h*l.out_w, l.mean_gpu);
         fast_variance_gpu(l.output_gpu, l.mean_gpu, l.batch, l.out_c, l.out_h*l.out_w, l.variance_gpu);
 
@@ -190,15 +214,50 @@
         copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_gpu, 1);
         normalize_gpu(l.output_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.out_c, l.out_h*l.out_w);
         copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_norm_gpu, 1);
-    } else {
+
+        scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
+        add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.out_c, l.out_w*l.out_h);
+#endif
+    }
+    else {
         normalize_gpu(l.output_gpu, l.rolling_mean_gpu, l.rolling_variance_gpu, l.batch, l.out_c, l.out_h*l.out_w);
+        scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
+        add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.out_c, l.out_w*l.out_h);
     }
 
-    scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
 }
 
-void backward_batchnorm_layer_gpu(const layer l, network_state state)
+void backward_batchnorm_layer_gpu(layer l, network_state state)
 {
+    if (!state.train) {
+        l.mean_gpu = l.rolling_mean_gpu;
+        l.variance_gpu = l.rolling_variance_gpu;
+    }
+#ifdef CUDNN
+    float one = 1;
+    float zero = 0;
+    cudnnBatchNormalizationBackward(cudnn_handle(),
+        CUDNN_BATCHNORM_SPATIAL,
+        &one,
+        &zero,
+        &one,
+        &one,
+        l.normDstTensorDesc,
+        l.x_gpu,                // input
+        l.normDstTensorDesc,
+        l.delta_gpu,            // input
+        l.normDstTensorDesc,
+        l.x_norm_gpu,            // output
+        l.normTensorDesc,
+        l.scales_gpu,            // output (should be FP32)
+        l.scale_updates_gpu,    // output (should be FP32)
+        l.bias_updates_gpu,        // output (should be FP32)
+        .00001,
+        l.mean_gpu,                // input (should be FP32)
+        l.variance_gpu);        // input (should be FP32)
+    copy_ongpu(l.outputs*l.batch, l.x_norm_gpu, 1, l.delta_gpu, 1);
+#else
+    backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.out_c, l.out_w*l.out_h);
     backward_scale_gpu(l.x_norm_gpu, l.delta_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.scale_updates_gpu);
 
     scale_bias_gpu(l.delta_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
@@ -206,6 +265,7 @@
     fast_mean_delta_gpu(l.delta_gpu, l.variance_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.mean_delta_gpu);
     fast_variance_delta_gpu(l.x_gpu, l.delta_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.variance_delta_gpu);
     normalize_delta_gpu(l.x_gpu, l.mean_gpu, l.variance_gpu, l.mean_delta_gpu, l.variance_delta_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.delta_gpu);
-    if(l.type == BATCHNORM) copy_ongpu(l.outputs*l.batch, l.delta_gpu, 1, state.delta, 1);
-}
 #endif
+    if (l.type == BATCHNORM) copy_ongpu(l.outputs*l.batch, l.delta_gpu, 1, state.delta, 1);
+}
+#endif
\ No newline at end of file

--
Gitblit v1.10.0