From 5a47c46b39475fc3581b9819f488b977ea1beca3 Mon Sep 17 00:00:00 2001
From: Edmond Yoo <hj3yoo@uwaterloo.ca>
Date: Sun, 16 Sep 2018 03:11:04 +0000
Subject: [PATCH] Moving files from MTGCardDetector

---
 src/detector.c | 1723 +++++++++++++++++++++++++++++++----------------------------
 1 files changed, 902 insertions(+), 821 deletions(-)

diff --git a/src/detector.c b/src/detector.c
index e891cd7..a816c74 100644
--- a/src/detector.c
+++ b/src/detector.c
@@ -1,8 +1,3 @@
-#ifdef _DEBUG
-#include <stdlib.h> 
-#include <crtdbg.h>  
-#endif
-
 #include "network.h"
 #include "region_layer.h"
 #include "cost_layer.h"
@@ -21,10 +16,10 @@
 
 #ifndef CV_VERSION_EPOCH
 #include "opencv2/videoio/videoio_c.h"
-#define OPENCV_VERSION CVAUX_STR(CV_VERSION_MAJOR)""CVAUX_STR(CV_VERSION_MINOR)""CVAUX_STR(CV_VERSION_REVISION)
+#define OPENCV_VERSION CVAUX_STR(CV_VERSION_MAJOR)"" CVAUX_STR(CV_VERSION_MINOR)"" CVAUX_STR(CV_VERSION_REVISION)
 #pragma comment(lib, "opencv_world" OPENCV_VERSION ".lib")
 #else
-#define OPENCV_VERSION CVAUX_STR(CV_VERSION_EPOCH)""CVAUX_STR(CV_VERSION_MAJOR)""CVAUX_STR(CV_VERSION_MINOR)
+#define OPENCV_VERSION CVAUX_STR(CV_VERSION_EPOCH)"" CVAUX_STR(CV_VERSION_MAJOR)"" CVAUX_STR(CV_VERSION_MINOR)
 #pragma comment(lib, "opencv_core" OPENCV_VERSION ".lib")
 #pragma comment(lib, "opencv_imgproc" OPENCV_VERSION ".lib")
 #pragma comment(lib, "opencv_highgui" OPENCV_VERSION ".lib")
@@ -32,7 +27,7 @@
 
 IplImage* draw_train_chart(float max_img_loss, int max_batches, int number_of_lines, int img_size);
 void draw_train_loss(IplImage* img, int img_size, float avg_loss, float max_img_loss, int current_batch, int max_batches);
-#endif	// OPENCV
+#endif    // OPENCV
 
 static int coco_ids[] = {1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,27,28,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,70,72,73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90};
 
@@ -66,6 +61,15 @@
     srand(time(0));
     network net = nets[0];
 
+    const int actual_batch_size = net.batch * net.subdivisions;
+    if (actual_batch_size == 1) {
+        printf("\n Error: You set incorrect value batch=1 for Training! You should set batch=64 subdivision=64 \n");
+        getchar();
+    }
+    else if (actual_batch_size < 64) {
+            printf("\n Warning: You set batch=%d lower than 64! It is recommended to set batch=64 subdivision=64 \n", actual_batch_size);
+    }
+
     int imgs = net.batch * net.subdivisions * ngpus;
     printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
     data train, buffer;
@@ -79,14 +83,15 @@
     //int N = plist->size;
     char **paths = (char **)list_to_array(plist);
 
-	int init_w = net.w;
-	int init_h = net.h;
-	int iter_save;
-	iter_save = get_current_batch(net);
+    int init_w = net.w;
+    int init_h = net.h;
+    int iter_save;
+    iter_save = get_current_batch(net);
 
     load_args args = {0};
     args.w = net.w;
     args.h = net.h;
+    args.c = net.c;
     args.paths = paths;
     args.n = imgs;
     args.m = plist->size;
@@ -94,10 +99,10 @@
     args.flip = net.flip;
     args.jitter = jitter;
     args.num_boxes = l.max_boxes;
-	args.small_object = net.small_object;
+    args.small_object = net.small_object;
     args.d = &buffer;
     args.type = DETECTION_DATA;
-	args.threads = 16;	// 64
+    args.threads = 16;    // 64
 
     args.angle = net.angle;
     args.exposure = net.exposure;
@@ -105,28 +110,40 @@
     args.hue = net.hue;
 
 #ifdef OPENCV
-	args.threads = 3;
-	IplImage* img = NULL;
-	float max_img_loss = 5;
-	int number_of_lines = 100;
-	int img_size = 1000;
-	if (!dont_show)
-		img = draw_train_chart(max_img_loss, net.max_batches, number_of_lines, img_size);
-#endif	//OPENCV
+    args.threads = 3 * ngpus;
+    IplImage* img = NULL;
+    float max_img_loss = 5;
+    int number_of_lines = 100;
+    int img_size = 1000;
+    if (!dont_show)
+        img = draw_train_chart(max_img_loss, net.max_batches, number_of_lines, img_size);
+#endif    //OPENCV
 
     pthread_t load_thread = load_data(args);
     double time;
     int count = 0;
     //while(i*imgs < N*120){
     while(get_current_batch(net) < net.max_batches){
-		if(l.random && count++%10 == 0){
+        if(l.random && count++%10 == 0){
             printf("Resizing\n");
-			int dim = (rand() % 12 + (init_w/32 - 5)) * 32;	// +-160
-            //if (get_current_batch(net)+100 > net.max_batches) dim = 544;
+            //int dim = (rand() % 12 + (init_w/32 - 5)) * 32;    // +-160
             //int dim = (rand() % 4 + 16) * 32;
-            printf("%d\n", dim);
-            args.w = dim;
-            args.h = dim;
+            //if (get_current_batch(net)+100 > net.max_batches) dim = 544;
+
+            //int random_val = rand() % 12;
+            //int dim_w = (random_val + (init_w / 32 - 5)) * 32;    // +-160
+            //int dim_h = (random_val + (init_h / 32 - 5)) * 32;    // +-160
+
+            float random_val = rand_scale(1.4);    // *x or /x
+            int dim_w = roundl(random_val*init_w / 32) * 32;
+            int dim_h = roundl(random_val*init_h / 32) * 32;
+
+            if (dim_w < 32) dim_w = 32;
+            if (dim_h < 32) dim_h = 32;
+
+            printf("%d x %d \n", dim_w, dim_h);
+            args.w = dim_w;
+            args.h = dim_h;
 
             pthread_join(load_thread, 0);
             train = buffer;
@@ -134,7 +151,7 @@
             load_thread = load_data(args);
 
             for(i = 0; i < ngpus; ++i){
-                resize_network(nets + i, dim, dim);
+                resize_network(nets + i, dim_w, dim_h);
             }
             net = nets[0];
         }
@@ -173,28 +190,28 @@
 #else
         loss = train_network(net, train);
 #endif
-        if (avg_loss < 0 || avg_loss != avg_loss) avg_loss = loss;	// if(-inf or nan)
+        if (avg_loss < 0 || avg_loss != avg_loss) avg_loss = loss;    // if(-inf or nan)
         avg_loss = avg_loss*.9 + loss*.1;
 
         i = get_current_batch(net);
-        printf("\n %d: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), loss, avg_loss, get_current_rate(net), (what_time_is_it_now()-time), i*imgs);
+        printf("\n %d: %f, %f avg loss, %f rate, %lf seconds, %d images\n", get_current_batch(net), loss, avg_loss, get_current_rate(net), (what_time_is_it_now()-time), i*imgs);
 
 #ifdef OPENCV
-		if(!dont_show)
-			draw_train_loss(img, img_size, avg_loss, max_img_loss, i, net.max_batches);
-#endif	// OPENCV
+        if(!dont_show)
+            draw_train_loss(img, img_size, avg_loss, max_img_loss, i, net.max_batches);
+#endif    // OPENCV
 
-		//if (i % 1000 == 0 || (i < 1000 && i % 100 == 0)) {
-		//if (i % 100 == 0) {
-		if(i >= (iter_save + 100)) {
-			iter_save = i;
+        //if (i % 1000 == 0 || (i < 1000 && i % 100 == 0)) {
+        //if (i % 100 == 0) {
+        if(i >= (iter_save + 100)) {
+            iter_save = i;
 #ifdef GPU
-			if (ngpus != 1) sync_nets(nets, ngpus, 0);
+            if (ngpus != 1) sync_nets(nets, ngpus, 0);
 #endif
-			char buff[256];
-			sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
-			save_weights(net, buff);
-		}
+            char buff[256];
+            sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
+            save_weights(net, buff);
+        }
         free_data(train);
     }
 #ifdef GPU
@@ -204,848 +221,872 @@
     sprintf(buff, "%s/%s_final.weights", backup_directory, base);
     save_weights(net, buff);
 
-	//cvReleaseImage(&img);
-	//cvDestroyAllWindows();
+#ifdef OPENCV
+    cvReleaseImage(&img);
+    cvDestroyAllWindows();
+#endif
+
+    // free memory
+    pthread_join(load_thread, 0);
+    free_data(buffer);
+
+    free(base);
+    free(paths);
+    free_list_contents(plist);
+    free_list(plist);
+
+    free_list_contents_kvp(options);
+    free_list(options);
+
+    free(nets);
+    free_network(net);
 }
 
 
 static int get_coco_image_id(char *filename)
 {
-	char *p = strrchr(filename, '/');
-	char *c = strrchr(filename, '_');
-	if (c) p = c;
-	return atoi(p + 1);
+    char *p = strrchr(filename, '/');
+    char *c = strrchr(filename, '_');
+    if (c) p = c;
+    return atoi(p + 1);
 }
 
 static void print_cocos(FILE *fp, char *image_path, detection *dets, int num_boxes, int classes, int w, int h)
 {
-	int i, j;
-	int image_id = get_coco_image_id(image_path);
-	for (i = 0; i < num_boxes; ++i) {
-		float xmin = dets[i].bbox.x - dets[i].bbox.w / 2.;
-		float xmax = dets[i].bbox.x + dets[i].bbox.w / 2.;
-		float ymin = dets[i].bbox.y - dets[i].bbox.h / 2.;
-		float ymax = dets[i].bbox.y + dets[i].bbox.h / 2.;
+    int i, j;
+    int image_id = get_coco_image_id(image_path);
+    for (i = 0; i < num_boxes; ++i) {
+        float xmin = dets[i].bbox.x - dets[i].bbox.w / 2.;
+        float xmax = dets[i].bbox.x + dets[i].bbox.w / 2.;
+        float ymin = dets[i].bbox.y - dets[i].bbox.h / 2.;
+        float ymax = dets[i].bbox.y + dets[i].bbox.h / 2.;
 
-		if (xmin < 0) xmin = 0;
-		if (ymin < 0) ymin = 0;
-		if (xmax > w) xmax = w;
-		if (ymax > h) ymax = h;
+        if (xmin < 0) xmin = 0;
+        if (ymin < 0) ymin = 0;
+        if (xmax > w) xmax = w;
+        if (ymax > h) ymax = h;
 
-		float bx = xmin;
-		float by = ymin;
-		float bw = xmax - xmin;
-		float bh = ymax - ymin;
+        float bx = xmin;
+        float by = ymin;
+        float bw = xmax - xmin;
+        float bh = ymax - ymin;
 
-		for (j = 0; j < classes; ++j) {
-			if (dets[i].prob[j]) fprintf(fp, "{\"image_id\":%d, \"category_id\":%d, \"bbox\":[%f, %f, %f, %f], \"score\":%f},\n", image_id, coco_ids[j], bx, by, bw, bh, dets[i].prob[j]);
-		}
-	}
+        for (j = 0; j < classes; ++j) {
+            if (dets[i].prob[j]) fprintf(fp, "{\"image_id\":%d, \"category_id\":%d, \"bbox\":[%f, %f, %f, %f], \"score\":%f},\n", image_id, coco_ids[j], bx, by, bw, bh, dets[i].prob[j]);
+        }
+    }
 }
 
 void print_detector_detections(FILE **fps, char *id, detection *dets, int total, int classes, int w, int h)
 {
-	int i, j;
-	for (i = 0; i < total; ++i) {
-		float xmin = dets[i].bbox.x - dets[i].bbox.w / 2. + 1;
-		float xmax = dets[i].bbox.x + dets[i].bbox.w / 2. + 1;
-		float ymin = dets[i].bbox.y - dets[i].bbox.h / 2. + 1;
-		float ymax = dets[i].bbox.y + dets[i].bbox.h / 2. + 1;
+    int i, j;
+    for (i = 0; i < total; ++i) {
+        float xmin = dets[i].bbox.x - dets[i].bbox.w / 2. + 1;
+        float xmax = dets[i].bbox.x + dets[i].bbox.w / 2. + 1;
+        float ymin = dets[i].bbox.y - dets[i].bbox.h / 2. + 1;
+        float ymax = dets[i].bbox.y + dets[i].bbox.h / 2. + 1;
 
-		if (xmin < 1) xmin = 1;
-		if (ymin < 1) ymin = 1;
-		if (xmax > w) xmax = w;
-		if (ymax > h) ymax = h;
+        if (xmin < 1) xmin = 1;
+        if (ymin < 1) ymin = 1;
+        if (xmax > w) xmax = w;
+        if (ymax > h) ymax = h;
 
-		for (j = 0; j < classes; ++j) {
-			if (dets[i].prob[j]) fprintf(fps[j], "%s %f %f %f %f %f\n", id, dets[i].prob[j],
-				xmin, ymin, xmax, ymax);
-		}
-	}
+        for (j = 0; j < classes; ++j) {
+            if (dets[i].prob[j]) fprintf(fps[j], "%s %f %f %f %f %f\n", id, dets[i].prob[j],
+                xmin, ymin, xmax, ymax);
+        }
+    }
 }
 
 void print_imagenet_detections(FILE *fp, int id, detection *dets, int total, int classes, int w, int h)
 {
-	int i, j;
-	for (i = 0; i < total; ++i) {
-		float xmin = dets[i].bbox.x - dets[i].bbox.w / 2.;
-		float xmax = dets[i].bbox.x + dets[i].bbox.w / 2.;
-		float ymin = dets[i].bbox.y - dets[i].bbox.h / 2.;
-		float ymax = dets[i].bbox.y + dets[i].bbox.h / 2.;
+    int i, j;
+    for (i = 0; i < total; ++i) {
+        float xmin = dets[i].bbox.x - dets[i].bbox.w / 2.;
+        float xmax = dets[i].bbox.x + dets[i].bbox.w / 2.;
+        float ymin = dets[i].bbox.y - dets[i].bbox.h / 2.;
+        float ymax = dets[i].bbox.y + dets[i].bbox.h / 2.;
 
-		if (xmin < 0) xmin = 0;
-		if (ymin < 0) ymin = 0;
-		if (xmax > w) xmax = w;
-		if (ymax > h) ymax = h;
+        if (xmin < 0) xmin = 0;
+        if (ymin < 0) ymin = 0;
+        if (xmax > w) xmax = w;
+        if (ymax > h) ymax = h;
 
-		for (j = 0; j < classes; ++j) {
-			int class = j;
-			if (dets[i].prob[class]) fprintf(fp, "%d %d %f %f %f %f %f\n", id, j + 1, dets[i].prob[class],
-				xmin, ymin, xmax, ymax);
-		}
-	}
+        for (j = 0; j < classes; ++j) {
+            int class = j;
+            if (dets[i].prob[class]) fprintf(fp, "%d %d %f %f %f %f %f\n", id, j + 1, dets[i].prob[class],
+                xmin, ymin, xmax, ymax);
+        }
+    }
 }
 
 void validate_detector(char *datacfg, char *cfgfile, char *weightfile, char *outfile)
 {
-	int j;
-	list *options = read_data_cfg(datacfg);
-	char *valid_images = option_find_str(options, "valid", "data/train.list");
-	char *name_list = option_find_str(options, "names", "data/names.list");
-	char *prefix = option_find_str(options, "results", "results");
-	char **names = get_labels(name_list);
-	char *mapf = option_find_str(options, "map", 0);
-	int *map = 0;
-	if (mapf) map = read_map(mapf);
+    int j;
+    list *options = read_data_cfg(datacfg);
+    char *valid_images = option_find_str(options, "valid", "data/train.list");
+    char *name_list = option_find_str(options, "names", "data/names.list");
+    char *prefix = option_find_str(options, "results", "results");
+    char **names = get_labels(name_list);
+    char *mapf = option_find_str(options, "map", 0);
+    int *map = 0;
+    if (mapf) map = read_map(mapf);
 
-	network net = parse_network_cfg_custom(cfgfile, 1);	// set batch=1
-	if (weightfile) {
-		load_weights(&net, weightfile);
-	}
-	//set_batch_network(&net, 1);
-	fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
-	srand(time(0));
+    network net = parse_network_cfg_custom(cfgfile, 1);    // set batch=1
+    if (weightfile) {
+        load_weights(&net, weightfile);
+    }
+    //set_batch_network(&net, 1);
+    fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
+    srand(time(0));
 
-	list *plist = get_paths(valid_images);
-	char **paths = (char **)list_to_array(plist);
+    list *plist = get_paths(valid_images);
+    char **paths = (char **)list_to_array(plist);
 
-	layer l = net.layers[net.n - 1];
-	int classes = l.classes;
+    layer l = net.layers[net.n - 1];
+    int classes = l.classes;
 
-	char buff[1024];
-	char *type = option_find_str(options, "eval", "voc");
-	FILE *fp = 0;
-	FILE **fps = 0;
-	int coco = 0;
-	int imagenet = 0;
-	if (0 == strcmp(type, "coco")) {
-		if (!outfile) outfile = "coco_results";
-		snprintf(buff, 1024, "%s/%s.json", prefix, outfile);
-		fp = fopen(buff, "w");
-		fprintf(fp, "[\n");
-		coco = 1;
-	}
-	else if (0 == strcmp(type, "imagenet")) {
-		if (!outfile) outfile = "imagenet-detection";
-		snprintf(buff, 1024, "%s/%s.txt", prefix, outfile);
-		fp = fopen(buff, "w");
-		imagenet = 1;
-		classes = 200;
-	}
-	else {
-		if (!outfile) outfile = "comp4_det_test_";
-		fps = calloc(classes, sizeof(FILE *));
-		for (j = 0; j < classes; ++j) {
-			snprintf(buff, 1024, "%s/%s%s.txt", prefix, outfile, names[j]);
-			fps[j] = fopen(buff, "w");
-		}
-	}
+    char buff[1024];
+    char *type = option_find_str(options, "eval", "voc");
+    FILE *fp = 0;
+    FILE **fps = 0;
+    int coco = 0;
+    int imagenet = 0;
+    if (0 == strcmp(type, "coco")) {
+        if (!outfile) outfile = "coco_results";
+        snprintf(buff, 1024, "%s/%s.json", prefix, outfile);
+        fp = fopen(buff, "w");
+        fprintf(fp, "[\n");
+        coco = 1;
+    }
+    else if (0 == strcmp(type, "imagenet")) {
+        if (!outfile) outfile = "imagenet-detection";
+        snprintf(buff, 1024, "%s/%s.txt", prefix, outfile);
+        fp = fopen(buff, "w");
+        imagenet = 1;
+        classes = 200;
+    }
+    else {
+        if (!outfile) outfile = "comp4_det_test_";
+        fps = calloc(classes, sizeof(FILE *));
+        for (j = 0; j < classes; ++j) {
+            snprintf(buff, 1024, "%s/%s%s.txt", prefix, outfile, names[j]);
+            fps[j] = fopen(buff, "w");
+        }
+    }
 
 
-	int m = plist->size;
-	int i = 0;
-	int t;
+    int m = plist->size;
+    int i = 0;
+    int t;
 
-	float thresh = .005;
-	float nms = .45;
+    float thresh = .005;
+    float nms = .45;
 
-	int nthreads = 4;
-	image *val = calloc(nthreads, sizeof(image));
-	image *val_resized = calloc(nthreads, sizeof(image));
-	image *buf = calloc(nthreads, sizeof(image));
-	image *buf_resized = calloc(nthreads, sizeof(image));
-	pthread_t *thr = calloc(nthreads, sizeof(pthread_t));
+    int nthreads = 4;
+    image *val = calloc(nthreads, sizeof(image));
+    image *val_resized = calloc(nthreads, sizeof(image));
+    image *buf = calloc(nthreads, sizeof(image));
+    image *buf_resized = calloc(nthreads, sizeof(image));
+    pthread_t *thr = calloc(nthreads, sizeof(pthread_t));
 
-	load_args args = { 0 };
-	args.w = net.w;
-	args.h = net.h;
-	args.type = IMAGE_DATA;
-	//args.type = LETTERBOX_DATA;
+    load_args args = { 0 };
+    args.w = net.w;
+    args.h = net.h;
+    args.c = net.c;
+    args.type = IMAGE_DATA;
+    //args.type = LETTERBOX_DATA;
 
-	for (t = 0; t < nthreads; ++t) {
-		args.path = paths[i + t];
-		args.im = &buf[t];
-		args.resized = &buf_resized[t];
-		thr[t] = load_data_in_thread(args);
-	}
-	time_t start = time(0);
-	for (i = nthreads; i < m + nthreads; i += nthreads) {
-		fprintf(stderr, "%d\n", i);
-		for (t = 0; t < nthreads && i + t - nthreads < m; ++t) {
-			pthread_join(thr[t], 0);
-			val[t] = buf[t];
-			val_resized[t] = buf_resized[t];
-		}
-		for (t = 0; t < nthreads && i + t < m; ++t) {
-			args.path = paths[i + t];
-			args.im = &buf[t];
-			args.resized = &buf_resized[t];
-			thr[t] = load_data_in_thread(args);
-		}
-		for (t = 0; t < nthreads && i + t - nthreads < m; ++t) {
-			char *path = paths[i + t - nthreads];
-			char *id = basecfg(path);
-			float *X = val_resized[t].data;
-			network_predict(net, X);
-			int w = val[t].w;
-			int h = val[t].h;
-			int nboxes = 0;
-			int letterbox = (args.type == LETTERBOX_DATA);
-			detection *dets = get_network_boxes(&net, w, h, thresh, .5, map, 0, &nboxes, letterbox);
-			if (nms) do_nms_sort(dets, nboxes, classes, nms);
-			if (coco) {
-				print_cocos(fp, path, dets, nboxes, classes, w, h);
-			}
-			else if (imagenet) {
-				print_imagenet_detections(fp, i + t - nthreads + 1, dets, nboxes, classes, w, h);
-			}
-			else {
-				print_detector_detections(fps, id, dets, nboxes, classes, w, h);
-			}
-			free_detections(dets, nboxes);
-			free(id);
-			free_image(val[t]);
-			free_image(val_resized[t]);
-		}
-	}
-	for (j = 0; j < classes; ++j) {
-		if (fps) fclose(fps[j]);
-	}
-	if (coco) {
-		fseek(fp, -2, SEEK_CUR);
-		fprintf(fp, "\n]\n");
-		fclose(fp);
-	}
-	fprintf(stderr, "Total Detection Time: %f Seconds\n", time(0) - start);
+    for (t = 0; t < nthreads; ++t) {
+        args.path = paths[i + t];
+        args.im = &buf[t];
+        args.resized = &buf_resized[t];
+        thr[t] = load_data_in_thread(args);
+    }
+    time_t start = time(0);
+    for (i = nthreads; i < m + nthreads; i += nthreads) {
+        fprintf(stderr, "%d\n", i);
+        for (t = 0; t < nthreads && i + t - nthreads < m; ++t) {
+            pthread_join(thr[t], 0);
+            val[t] = buf[t];
+            val_resized[t] = buf_resized[t];
+        }
+        for (t = 0; t < nthreads && i + t < m; ++t) {
+            args.path = paths[i + t];
+            args.im = &buf[t];
+            args.resized = &buf_resized[t];
+            thr[t] = load_data_in_thread(args);
+        }
+        for (t = 0; t < nthreads && i + t - nthreads < m; ++t) {
+            char *path = paths[i + t - nthreads];
+            char *id = basecfg(path);
+            float *X = val_resized[t].data;
+            network_predict(net, X);
+            int w = val[t].w;
+            int h = val[t].h;
+            int nboxes = 0;
+            int letterbox = (args.type == LETTERBOX_DATA);
+            detection *dets = get_network_boxes(&net, w, h, thresh, .5, map, 0, &nboxes, letterbox);
+            if (nms) do_nms_sort(dets, nboxes, classes, nms);
+            if (coco) {
+                print_cocos(fp, path, dets, nboxes, classes, w, h);
+            }
+            else if (imagenet) {
+                print_imagenet_detections(fp, i + t - nthreads + 1, dets, nboxes, classes, w, h);
+            }
+            else {
+                print_detector_detections(fps, id, dets, nboxes, classes, w, h);
+            }
+            free_detections(dets, nboxes);
+            free(id);
+            free_image(val[t]);
+            free_image(val_resized[t]);
+        }
+    }
+    for (j = 0; j < classes; ++j) {
+        if (fps) fclose(fps[j]);
+    }
+    if (coco) {
+        fseek(fp, -2, SEEK_CUR);
+        fprintf(fp, "\n]\n");
+        fclose(fp);
+    }
+    fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)time(0) - start);
 }
 
 void validate_detector_recall(char *datacfg, char *cfgfile, char *weightfile)
 {
-	network net = parse_network_cfg_custom(cfgfile, 1);	// set batch=1
-	if (weightfile) {
-		load_weights(&net, weightfile);
-	}
-	//set_batch_network(&net, 1);
-	fuse_conv_batchnorm(net);
-	srand(time(0));
+    network net = parse_network_cfg_custom(cfgfile, 1);    // set batch=1
+    if (weightfile) {
+        load_weights(&net, weightfile);
+    }
+    //set_batch_network(&net, 1);
+    fuse_conv_batchnorm(net);
+    srand(time(0));
 
-	//list *plist = get_paths("data/coco_val_5k.list");
-	list *options = read_data_cfg(datacfg);
-	char *valid_images = option_find_str(options, "valid", "data/train.txt");
-	list *plist = get_paths(valid_images);
-	char **paths = (char **)list_to_array(plist);
+    //list *plist = get_paths("data/coco_val_5k.list");
+    list *options = read_data_cfg(datacfg);
+    char *valid_images = option_find_str(options, "valid", "data/train.txt");
+    list *plist = get_paths(valid_images);
+    char **paths = (char **)list_to_array(plist);
 
-	layer l = net.layers[net.n - 1];
+    layer l = net.layers[net.n - 1];
 
-	int j, k;
+    int j, k;
 
-	int m = plist->size;
-	int i = 0;
+    int m = plist->size;
+    int i = 0;
 
-	float thresh = .001;
-	float iou_thresh = .5;
-	float nms = .4;
+    float thresh = .001;
+    float iou_thresh = .5;
+    float nms = .4;
 
-	int total = 0;
-	int correct = 0;
-	int proposals = 0;
-	float avg_iou = 0;
+    int total = 0;
+    int correct = 0;
+    int proposals = 0;
+    float avg_iou = 0;
 
-	for (i = 0; i < m; ++i) {
-		char *path = paths[i];
-		image orig = load_image_color(path, 0, 0);
-		image sized = resize_image(orig, net.w, net.h);
-		char *id = basecfg(path);
-		network_predict(net, sized.data);
-		int nboxes = 0;
-		int letterbox = 0;
-		detection *dets = get_network_boxes(&net, sized.w, sized.h, thresh, .5, 0, 1, &nboxes, letterbox);
-		if (nms) do_nms_obj(dets, nboxes, 1, nms);
+    for (i = 0; i < m; ++i) {
+        char *path = paths[i];
+        image orig = load_image(path, 0, 0, net.c);
+        image sized = resize_image(orig, net.w, net.h);
+        char *id = basecfg(path);
+        network_predict(net, sized.data);
+        int nboxes = 0;
+        int letterbox = 0;
+        detection *dets = get_network_boxes(&net, sized.w, sized.h, thresh, .5, 0, 1, &nboxes, letterbox);
+        if (nms) do_nms_obj(dets, nboxes, 1, nms);
 
-		char labelpath[4096];
-		find_replace(path, "images", "labels", labelpath);
-		find_replace(labelpath, "JPEGImages", "labels", labelpath);
-		find_replace(labelpath, ".jpg", ".txt", labelpath);
-		find_replace(labelpath, ".png", ".txt", labelpath);
-		find_replace(labelpath, ".bmp", ".txt", labelpath);
-		find_replace(labelpath, ".JPG", ".txt", labelpath);
-		find_replace(labelpath, ".JPEG", ".txt", labelpath);
+        char labelpath[4096];
+        replace_image_to_label(path, labelpath);
 
-		int num_labels = 0;
-		box_label *truth = read_boxes(labelpath, &num_labels);
-		for (k = 0; k < nboxes; ++k) {
-			if (dets[k].objectness > thresh) {
-				++proposals;
-			}
-		}
-		for (j = 0; j < num_labels; ++j) {
-			++total;
-			box t = { truth[j].x, truth[j].y, truth[j].w, truth[j].h };
-			float best_iou = 0;
-			for (k = 0; k < nboxes; ++k) {
-				float iou = box_iou(dets[k].bbox, t);
-				if (dets[k].objectness > thresh && iou > best_iou) {
-					best_iou = iou;
-				}
-			}
-			avg_iou += best_iou;
-			if (best_iou > iou_thresh) {
-				++correct;
-			}
-		}
-		//fprintf(stderr, " %s - %s - ", paths[i], labelpath);
-		fprintf(stderr, "%5d %5d %5d\tRPs/Img: %.2f\tIOU: %.2f%%\tRecall:%.2f%%\n", i, correct, total, (float)proposals / (i + 1), avg_iou * 100 / total, 100.*correct / total);
-		free(id);
-		free_image(orig);
-		free_image(sized);
-	}
+        int num_labels = 0;
+        box_label *truth = read_boxes(labelpath, &num_labels);
+        for (k = 0; k < nboxes; ++k) {
+            if (dets[k].objectness > thresh) {
+                ++proposals;
+            }
+        }
+        for (j = 0; j < num_labels; ++j) {
+            ++total;
+            box t = { truth[j].x, truth[j].y, truth[j].w, truth[j].h };
+            float best_iou = 0;
+            for (k = 0; k < nboxes; ++k) {
+                float iou = box_iou(dets[k].bbox, t);
+                if (dets[k].objectness > thresh && iou > best_iou) {
+                    best_iou = iou;
+                }
+            }
+            avg_iou += best_iou;
+            if (best_iou > iou_thresh) {
+                ++correct;
+            }
+        }
+        //fprintf(stderr, " %s - %s - ", paths[i], labelpath);
+        fprintf(stderr, "%5d %5d %5d\tRPs/Img: %.2f\tIOU: %.2f%%\tRecall:%.2f%%\n", i, correct, total, (float)proposals / (i + 1), avg_iou * 100 / total, 100.*correct / total);
+        free(id);
+        free_image(orig);
+        free_image(sized);
+    }
 }
 
 typedef struct {
-	box b;
-	float p;
-	int class_id;
-	int image_index;
-	int truth_flag;
-	int unique_truth_index;
+    box b;
+    float p;
+    int class_id;
+    int image_index;
+    int truth_flag;
+    int unique_truth_index;
 } box_prob;
 
 int detections_comparator(const void *pa, const void *pb)
 {
-	box_prob a = *(box_prob *)pa;
-	box_prob b = *(box_prob *)pb;
-	float diff = a.p - b.p;
-	if (diff < 0) return 1;
-	else if (diff > 0) return -1;
-	return 0;
+    box_prob a = *(box_prob *)pa;
+    box_prob b = *(box_prob *)pb;
+    float diff = a.p - b.p;
+    if (diff < 0) return 1;
+    else if (diff > 0) return -1;
+    return 0;
 }
 
 void validate_detector_map(char *datacfg, char *cfgfile, char *weightfile, float thresh_calc_avg_iou)
 {
-	int j;
-	list *options = read_data_cfg(datacfg);
-	char *valid_images = option_find_str(options, "valid", "data/train.txt");
-	char *difficult_valid_images = option_find_str(options, "difficult", NULL);
-	char *name_list = option_find_str(options, "names", "data/names.list");
-	char **names = get_labels(name_list);
-	char *mapf = option_find_str(options, "map", 0);
-	int *map = 0;
-	if (mapf) map = read_map(mapf);
+    int j;
+    list *options = read_data_cfg(datacfg);
+    char *valid_images = option_find_str(options, "valid", "data/train.txt");
+    char *difficult_valid_images = option_find_str(options, "difficult", NULL);
+    char *name_list = option_find_str(options, "names", "data/names.list");
+    char **names = get_labels(name_list);
+    char *mapf = option_find_str(options, "map", 0);
+    int *map = 0;
+    if (mapf) map = read_map(mapf);
+    FILE* reinforcement_fd = NULL;
 
-	network net = parse_network_cfg_custom(cfgfile, 1);	// set batch=1
-	if (weightfile) {
-		load_weights(&net, weightfile);
-	}
-	//set_batch_network(&net, 1);
-	fuse_conv_batchnorm(net);
-	srand(time(0));
+    network net = parse_network_cfg_custom(cfgfile, 1);    // set batch=1
+    if (weightfile) {
+        load_weights(&net, weightfile);
+    }
+    //set_batch_network(&net, 1);
+    fuse_conv_batchnorm(net);
+    calculate_binary_weights(net);
+    srand(time(0));
 
-	list *plist = get_paths(valid_images);
-	char **paths = (char **)list_to_array(plist);
+    list *plist = get_paths(valid_images);
+    char **paths = (char **)list_to_array(plist);
 
-	char **paths_dif = NULL;
-	if (difficult_valid_images) {
-		list *plist_dif = get_paths(difficult_valid_images);
-		paths_dif = (char **)list_to_array(plist_dif);
-	}
-	
-
-	layer l = net.layers[net.n - 1];
-	int classes = l.classes;
-
-	int m = plist->size;
-	int i = 0;
-	int t;
-
-	const float thresh = .005;
-	const float nms = .45;
-	const float iou_thresh = 0.5;
-
-	int nthreads = 4;
-	image *val = calloc(nthreads, sizeof(image));
-	image *val_resized = calloc(nthreads, sizeof(image));
-	image *buf = calloc(nthreads, sizeof(image));
-	image *buf_resized = calloc(nthreads, sizeof(image));
-	pthread_t *thr = calloc(nthreads, sizeof(pthread_t));
-
-	load_args args = { 0 };
-	args.w = net.w;
-	args.h = net.h;
-	args.type = IMAGE_DATA;
-	//args.type = LETTERBOX_DATA;
-
-	//const float thresh_calc_avg_iou = 0.24;
-	float avg_iou = 0;
-	int tp_for_thresh = 0;
-	int fp_for_thresh = 0;
-
-	box_prob *detections = calloc(1, sizeof(box_prob));
-	int detections_count = 0;
-	int unique_truth_count = 0;
-
-	int *truth_classes_count = calloc(classes, sizeof(int));
-
-	for (t = 0; t < nthreads; ++t) {
-		args.path = paths[i + t];
-		args.im = &buf[t];
-		args.resized = &buf_resized[t];
-		thr[t] = load_data_in_thread(args);
-	}
-	time_t start = time(0);
-	for (i = nthreads; i < m + nthreads; i += nthreads) {
-		fprintf(stderr, "%d\n", i);
-		for (t = 0; t < nthreads && i + t - nthreads < m; ++t) {
-			pthread_join(thr[t], 0);
-			val[t] = buf[t];
-			val_resized[t] = buf_resized[t];
-		}
-		for (t = 0; t < nthreads && i + t < m; ++t) {
-			args.path = paths[i + t];
-			args.im = &buf[t];
-			args.resized = &buf_resized[t];
-			thr[t] = load_data_in_thread(args);
-		}
-		for (t = 0; t < nthreads && i + t - nthreads < m; ++t) {
-			const int image_index = i + t - nthreads;
-			char *path = paths[image_index];
-			char *id = basecfg(path);
-			float *X = val_resized[t].data;
-			network_predict(net, X);
-
-			int nboxes = 0;
-			int letterbox = (args.type == LETTERBOX_DATA);
-			float hier_thresh = 0;
-			detection *dets = get_network_boxes(&net, 1, 1, thresh, hier_thresh, 0, 0, &nboxes, letterbox);
-			//detection *dets = get_network_boxes(&net, val[t].w, val[t].h, thresh, hier_thresh, 0, 1, &nboxes, letterbox); // for letterbox=1
-			if (nms) do_nms_sort(dets, nboxes, l.classes, nms);
-
-			char labelpath[4096];
-			find_replace(path, "images", "labels", labelpath);
-			find_replace(labelpath, "JPEGImages", "labels", labelpath);
-			find_replace(labelpath, ".jpg", ".txt", labelpath);
-			find_replace(labelpath, ".png", ".txt", labelpath);
-			find_replace(labelpath, ".bmp", ".txt", labelpath);
-			find_replace(labelpath, ".JPG", ".txt", labelpath);
-			find_replace(labelpath, ".JPEG", ".txt", labelpath);
-			int num_labels = 0;
-			box_label *truth = read_boxes(labelpath, &num_labels);
-			int i, j;
-			for (j = 0; j < num_labels; ++j) {
-				truth_classes_count[truth[j].id]++;
-			}
-
-			// difficult
-			box_label *truth_dif = NULL;
-			int num_labels_dif = 0;
-			if (paths_dif)
-			{
-				char *path_dif = paths_dif[image_index];
-
-				char labelpath_dif[4096];
-				find_replace(path_dif, "images", "labels", labelpath_dif);
-				find_replace(labelpath_dif, "JPEGImages", "labels", labelpath_dif);
-				find_replace(labelpath_dif, ".jpg", ".txt", labelpath_dif);
-				find_replace(labelpath_dif, ".JPEG", ".txt", labelpath_dif);
-				find_replace(labelpath_dif, ".png", ".txt", labelpath_dif);				
-				truth_dif = read_boxes(labelpath_dif, &num_labels_dif);
-			}
-
-			const int checkpoint_detections_count = detections_count;
-
-			for (i = 0; i < nboxes; ++i) {
-
-				int class_id;
-				for (class_id = 0; class_id < classes; ++class_id) {
-					float prob = dets[i].prob[class_id];
-					if (prob > 0) {
-						detections_count++;
-						detections = realloc(detections, detections_count * sizeof(box_prob));
-						detections[detections_count - 1].b = dets[i].bbox;
-						detections[detections_count - 1].p = prob;
-						detections[detections_count - 1].image_index = image_index;
-						detections[detections_count - 1].class_id = class_id;
-						detections[detections_count - 1].truth_flag = 0;
-						detections[detections_count - 1].unique_truth_index = -1;
-
-						int truth_index = -1;
-						float max_iou = 0;
-						for (j = 0; j < num_labels; ++j)
-						{
-							box t = { truth[j].x, truth[j].y, truth[j].w, truth[j].h };
-							//printf(" IoU = %f, prob = %f, class_id = %d, truth[j].id = %d \n", 
-							//	box_iou(dets[i].bbox, t), prob, class_id, truth[j].id);
-							float current_iou = box_iou(dets[i].bbox, t);
-							if (current_iou > iou_thresh && class_id == truth[j].id) {
-								if (current_iou > max_iou) {
-									max_iou = current_iou;
-									truth_index = unique_truth_count + j;
-								}
-							}
-						}
-
-						// best IoU
-						if (truth_index > -1) {
-							detections[detections_count - 1].truth_flag = 1;
-							detections[detections_count - 1].unique_truth_index = truth_index;
-						}
-						else {
-							// if object is difficult then remove detection
-							for (j = 0; j < num_labels_dif; ++j) {
-								box t = { truth_dif[j].x, truth_dif[j].y, truth_dif[j].w, truth_dif[j].h };
-								float current_iou = box_iou(dets[i].bbox, t);
-								if (current_iou > iou_thresh && class_id == truth_dif[j].id) {
-									--detections_count;
-									break;
-								}
-							}
-						}
-
-						// calc avg IoU, true-positives, false-positives for required Threshold
-						if (prob > thresh_calc_avg_iou) {
-							int z, found = 0;
-							for (z = checkpoint_detections_count; z < detections_count-1; ++z)
-								if (detections[z].unique_truth_index == truth_index) {
-									found = 1; break;
-								}
-
-							if(truth_index > -1 && found == 0) {
-								avg_iou += max_iou;
-								++tp_for_thresh;
-							}
-							else
-								fp_for_thresh++;
-						}
-					}
-				}
-			}
-			
-			unique_truth_count += num_labels;
-
-			free_detections(dets, nboxes);
-			free(id);
-			free_image(val[t]);
-			free_image(val_resized[t]);
-		}
-	}
-
-	if((tp_for_thresh + fp_for_thresh) > 0)
-		avg_iou = avg_iou / (tp_for_thresh + fp_for_thresh);
-
-	
-	// SORT(detections)
-	qsort(detections, detections_count, sizeof(box_prob), detections_comparator);
-	
-	typedef struct {
-		double precision;
-		double recall;
-		int tp, fp, fn;
-	} pr_t;
-
-	// for PR-curve
-	pr_t **pr = calloc(classes, sizeof(pr_t*));
-	for (i = 0; i < classes; ++i) {
-		pr[i] = calloc(detections_count, sizeof(pr_t));
-	}
-	printf("detections_count = %d, unique_truth_count = %d  \n", detections_count, unique_truth_count);
+    char **paths_dif = NULL;
+    if (difficult_valid_images) {
+        list *plist_dif = get_paths(difficult_valid_images);
+        paths_dif = (char **)list_to_array(plist_dif);
+    }
 
 
-	int *truth_flags = calloc(unique_truth_count, sizeof(int));
+    layer l = net.layers[net.n - 1];
+    int classes = l.classes;
 
-	int rank;
-	for (rank = 0; rank < detections_count; ++rank) {
-		if(rank % 100 == 0)
-			printf(" rank = %d of ranks = %d \r", rank, detections_count);
+    int m = plist->size;
+    int i = 0;
+    int t;
 
-		if (rank > 0) {
-			int class_id;
-			for (class_id = 0; class_id < classes; ++class_id) {
-				pr[class_id][rank].tp = pr[class_id][rank - 1].tp;
-				pr[class_id][rank].fp = pr[class_id][rank - 1].fp;
-			}
-		}
+    const float thresh = .005;
+    const float nms = .45;
+    const float iou_thresh = 0.5;
 
-		box_prob d = detections[rank];
-		// if (detected && isn't detected before)
-		if (d.truth_flag == 1) {
-			if (truth_flags[d.unique_truth_index] == 0) 
-			{
-				truth_flags[d.unique_truth_index] = 1;
-				pr[d.class_id][rank].tp++;	// true-positive
-			}
-		}
-		else {
-			pr[d.class_id][rank].fp++;	// false-positive
-		}
+    int nthreads = 4;
+    image *val = calloc(nthreads, sizeof(image));
+    image *val_resized = calloc(nthreads, sizeof(image));
+    image *buf = calloc(nthreads, sizeof(image));
+    image *buf_resized = calloc(nthreads, sizeof(image));
+    pthread_t *thr = calloc(nthreads, sizeof(pthread_t));
 
-		for (i = 0; i < classes; ++i) 
-		{
-			const int tp = pr[i][rank].tp;
-			const int fp = pr[i][rank].fp;
-			const int fn = truth_classes_count[i] - tp;	// false-negative = objects - true-positive
-			pr[i][rank].fn = fn;
+    load_args args = { 0 };
+    args.w = net.w;
+    args.h = net.h;
+    args.c = net.c;
+    args.type = IMAGE_DATA;
+    //args.type = LETTERBOX_DATA;
 
-			if ((tp + fp) > 0) pr[i][rank].precision = (double)tp / (double)(tp + fp);
-			else pr[i][rank].precision = 0;
+    //const float thresh_calc_avg_iou = 0.24;
+    float avg_iou = 0;
+    int tp_for_thresh = 0;
+    int fp_for_thresh = 0;
 
-			if ((tp + fn) > 0) pr[i][rank].recall = (double)tp / (double)(tp + fn);
-			else pr[i][rank].recall = 0;
-		}
-	}
+    box_prob *detections = calloc(1, sizeof(box_prob));
+    int detections_count = 0;
+    int unique_truth_count = 0;
 
-	free(truth_flags);
-	
-	
-	double mean_average_precision = 0;
+    int *truth_classes_count = calloc(classes, sizeof(int));
 
-	for (i = 0; i < classes; ++i) {
-		double avg_precision = 0;
-		int point;
-		for (point = 0; point < 11; ++point) {
-			double cur_recall = point * 0.1;
-			double cur_precision = 0;
-			for (rank = 0; rank < detections_count; ++rank)
-			{
-				if (pr[i][rank].recall >= cur_recall) {	// > or >=
-					if (pr[i][rank].precision > cur_precision) {
-						cur_precision = pr[i][rank].precision;
-					}
-				}
-			}
-			//printf("class_id = %d, point = %d, cur_recall = %.4f, cur_precision = %.4f \n", i, point, cur_recall, cur_precision);
+    for (t = 0; t < nthreads; ++t) {
+        args.path = paths[i + t];
+        args.im = &buf[t];
+        args.resized = &buf_resized[t];
+        thr[t] = load_data_in_thread(args);
+    }
+    time_t start = time(0);
+    for (i = nthreads; i < m + nthreads; i += nthreads) {
+        fprintf(stderr, "%d\n", i);
+        for (t = 0; t < nthreads && i + t - nthreads < m; ++t) {
+            pthread_join(thr[t], 0);
+            val[t] = buf[t];
+            val_resized[t] = buf_resized[t];
+        }
+        for (t = 0; t < nthreads && i + t < m; ++t) {
+            args.path = paths[i + t];
+            args.im = &buf[t];
+            args.resized = &buf_resized[t];
+            thr[t] = load_data_in_thread(args);
+        }
+        for (t = 0; t < nthreads && i + t - nthreads < m; ++t) {
+            const int image_index = i + t - nthreads;
+            char *path = paths[image_index];
+            char *id = basecfg(path);
+            float *X = val_resized[t].data;
+            network_predict(net, X);
 
-			avg_precision += cur_precision;
-		}
-		avg_precision = avg_precision / 11;
-		printf("class_id = %d, name = %s, \t ap = %2.2f %% \n", i, names[i], avg_precision*100);
-		mean_average_precision += avg_precision;
-	}
-	
-	const float cur_precision = (float)tp_for_thresh / ((float)tp_for_thresh + (float)fp_for_thresh);
-	const float cur_recall = (float)tp_for_thresh / ((float)tp_for_thresh + (float)(unique_truth_count - tp_for_thresh));
-	const float f1_score = 2.F * cur_precision * cur_recall / (cur_precision + cur_recall);
-	printf(" for thresh = %1.2f, precision = %1.2f, recall = %1.2f, F1-score = %1.2f \n",
-		thresh_calc_avg_iou, cur_precision, cur_recall, f1_score);
+            int nboxes = 0;
+            int letterbox = (args.type == LETTERBOX_DATA);
+            float hier_thresh = 0;
+            detection *dets = get_network_boxes(&net, 1, 1, thresh, hier_thresh, 0, 0, &nboxes, letterbox);
+            //detection *dets = get_network_boxes(&net, val[t].w, val[t].h, thresh, hier_thresh, 0, 1, &nboxes, letterbox); // for letterbox=1
+            if (nms) do_nms_sort(dets, nboxes, l.classes, nms);
 
-	printf(" for thresh = %0.2f, TP = %d, FP = %d, FN = %d, average IoU = %2.2f %% \n", 
-		thresh_calc_avg_iou, tp_for_thresh, fp_for_thresh, unique_truth_count - tp_for_thresh, avg_iou * 100);
+            char labelpath[4096];
+            replace_image_to_label(path, labelpath);
+            int num_labels = 0;
+            box_label *truth = read_boxes(labelpath, &num_labels);
+            int i, j;
+            for (j = 0; j < num_labels; ++j) {
+                truth_classes_count[truth[j].id]++;
+            }
 
-	mean_average_precision = mean_average_precision / classes;
-	printf("\n mean average precision (mAP) = %f, or %2.2f %% \n", mean_average_precision, mean_average_precision*100);
+            // difficult
+            box_label *truth_dif = NULL;
+            int num_labels_dif = 0;
+            if (paths_dif)
+            {
+                char *path_dif = paths_dif[image_index];
+
+                char labelpath_dif[4096];
+                replace_image_to_label(path_dif, labelpath_dif);
+
+                truth_dif = read_boxes(labelpath_dif, &num_labels_dif);
+            }
+
+            const int checkpoint_detections_count = detections_count;
+
+            for (i = 0; i < nboxes; ++i) {
+
+                int class_id;
+                for (class_id = 0; class_id < classes; ++class_id) {
+                    float prob = dets[i].prob[class_id];
+                    if (prob > 0) {
+                        detections_count++;
+                        detections = realloc(detections, detections_count * sizeof(box_prob));
+                        detections[detections_count - 1].b = dets[i].bbox;
+                        detections[detections_count - 1].p = prob;
+                        detections[detections_count - 1].image_index = image_index;
+                        detections[detections_count - 1].class_id = class_id;
+                        detections[detections_count - 1].truth_flag = 0;
+                        detections[detections_count - 1].unique_truth_index = -1;
+
+                        int truth_index = -1;
+                        float max_iou = 0;
+                        for (j = 0; j < num_labels; ++j)
+                        {
+                            box t = { truth[j].x, truth[j].y, truth[j].w, truth[j].h };
+                            //printf(" IoU = %f, prob = %f, class_id = %d, truth[j].id = %d \n",
+                            //    box_iou(dets[i].bbox, t), prob, class_id, truth[j].id);
+                            float current_iou = box_iou(dets[i].bbox, t);
+                            if (current_iou > iou_thresh && class_id == truth[j].id) {
+                                if (current_iou > max_iou) {
+                                    max_iou = current_iou;
+                                    truth_index = unique_truth_count + j;
+                                }
+                            }
+                        }
+
+                        // best IoU
+                        if (truth_index > -1) {
+                            detections[detections_count - 1].truth_flag = 1;
+                            detections[detections_count - 1].unique_truth_index = truth_index;
+                        }
+                        else {
+                            // if object is difficult then remove detection
+                            for (j = 0; j < num_labels_dif; ++j) {
+                                box t = { truth_dif[j].x, truth_dif[j].y, truth_dif[j].w, truth_dif[j].h };
+                                float current_iou = box_iou(dets[i].bbox, t);
+                                if (current_iou > iou_thresh && class_id == truth_dif[j].id) {
+                                    --detections_count;
+                                    break;
+                                }
+                            }
+                        }
+
+                        // calc avg IoU, true-positives, false-positives for required Threshold
+                        if (prob > thresh_calc_avg_iou) {
+                            int z, found = 0;
+                            for (z = checkpoint_detections_count; z < detections_count-1; ++z)
+                                if (detections[z].unique_truth_index == truth_index) {
+                                    found = 1; break;
+                                }
+
+                            if(truth_index > -1 && found == 0) {
+                                avg_iou += max_iou;
+                                ++tp_for_thresh;
+                            }
+                            else
+                                fp_for_thresh++;
+                        }
+                    }
+                }
+            }
+
+            unique_truth_count += num_labels;
+
+            //static int previous_errors = 0;
+            //int total_errors = fp_for_thresh + (unique_truth_count - tp_for_thresh);
+            //int errors_in_this_image = total_errors - previous_errors;
+            //previous_errors = total_errors;
+            //if(reinforcement_fd == NULL) reinforcement_fd = fopen("reinforcement.txt", "wb");
+            //char buff[1000];
+            //sprintf(buff, "%s\n", path);
+            //if(errors_in_this_image > 0) fwrite(buff, sizeof(char), strlen(buff), reinforcement_fd);
+
+            free_detections(dets, nboxes);
+            free(id);
+            free_image(val[t]);
+            free_image(val_resized[t]);
+        }
+    }
+
+    if((tp_for_thresh + fp_for_thresh) > 0)
+        avg_iou = avg_iou / (tp_for_thresh + fp_for_thresh);
 
 
-	for (i = 0; i < classes; ++i) {
-		free(pr[i]);
-	}
-	free(pr);
-	free(detections);
-	free(truth_classes_count);
+    // SORT(detections)
+    qsort(detections, detections_count, sizeof(box_prob), detections_comparator);
 
-	fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start));
+    typedef struct {
+        double precision;
+        double recall;
+        int tp, fp, fn;
+    } pr_t;
+
+    // for PR-curve
+    pr_t **pr = calloc(classes, sizeof(pr_t*));
+    for (i = 0; i < classes; ++i) {
+        pr[i] = calloc(detections_count, sizeof(pr_t));
+    }
+    printf("detections_count = %d, unique_truth_count = %d  \n", detections_count, unique_truth_count);
+
+
+    int *truth_flags = calloc(unique_truth_count, sizeof(int));
+
+    int rank;
+    for (rank = 0; rank < detections_count; ++rank) {
+        if(rank % 100 == 0)
+            printf(" rank = %d of ranks = %d \r", rank, detections_count);
+
+        if (rank > 0) {
+            int class_id;
+            for (class_id = 0; class_id < classes; ++class_id) {
+                pr[class_id][rank].tp = pr[class_id][rank - 1].tp;
+                pr[class_id][rank].fp = pr[class_id][rank - 1].fp;
+            }
+        }
+
+        box_prob d = detections[rank];
+        // if (detected && isn't detected before)
+        if (d.truth_flag == 1) {
+            if (truth_flags[d.unique_truth_index] == 0)
+            {
+                truth_flags[d.unique_truth_index] = 1;
+                pr[d.class_id][rank].tp++;    // true-positive
+            }
+        }
+        else {
+            pr[d.class_id][rank].fp++;    // false-positive
+        }
+
+        for (i = 0; i < classes; ++i)
+        {
+            const int tp = pr[i][rank].tp;
+            const int fp = pr[i][rank].fp;
+            const int fn = truth_classes_count[i] - tp;    // false-negative = objects - true-positive
+            pr[i][rank].fn = fn;
+
+            if ((tp + fp) > 0) pr[i][rank].precision = (double)tp / (double)(tp + fp);
+            else pr[i][rank].precision = 0;
+
+            if ((tp + fn) > 0) pr[i][rank].recall = (double)tp / (double)(tp + fn);
+            else pr[i][rank].recall = 0;
+        }
+    }
+
+    free(truth_flags);
+
+
+    double mean_average_precision = 0;
+
+    for (i = 0; i < classes; ++i) {
+        double avg_precision = 0;
+        int point;
+        for (point = 0; point < 11; ++point) {
+            double cur_recall = point * 0.1;
+            double cur_precision = 0;
+            for (rank = 0; rank < detections_count; ++rank)
+            {
+                if (pr[i][rank].recall >= cur_recall) {    // > or >=
+                    if (pr[i][rank].precision > cur_precision) {
+                        cur_precision = pr[i][rank].precision;
+                    }
+                }
+            }
+            //printf("class_id = %d, point = %d, cur_recall = %.4f, cur_precision = %.4f \n", i, point, cur_recall, cur_precision);
+
+            avg_precision += cur_precision;
+        }
+        avg_precision = avg_precision / 11;
+        printf("class_id = %d, name = %s, \t ap = %2.2f %% \n", i, names[i], avg_precision*100);
+        mean_average_precision += avg_precision;
+    }
+
+    const float cur_precision = (float)tp_for_thresh / ((float)tp_for_thresh + (float)fp_for_thresh);
+    const float cur_recall = (float)tp_for_thresh / ((float)tp_for_thresh + (float)(unique_truth_count - tp_for_thresh));
+    const float f1_score = 2.F * cur_precision * cur_recall / (cur_precision + cur_recall);
+    printf(" for thresh = %1.2f, precision = %1.2f, recall = %1.2f, F1-score = %1.2f \n",
+        thresh_calc_avg_iou, cur_precision, cur_recall, f1_score);
+
+    printf(" for thresh = %0.2f, TP = %d, FP = %d, FN = %d, average IoU = %2.2f %% \n",
+        thresh_calc_avg_iou, tp_for_thresh, fp_for_thresh, unique_truth_count - tp_for_thresh, avg_iou * 100);
+
+    mean_average_precision = mean_average_precision / classes;
+    printf("\n mean average precision (mAP) = %f, or %2.2f %% \n", mean_average_precision, mean_average_precision*100);
+
+
+    for (i = 0; i < classes; ++i) {
+        free(pr[i]);
+    }
+    free(pr);
+    free(detections);
+    free(truth_classes_count);
+
+    fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start));
+    if (reinforcement_fd != NULL) fclose(reinforcement_fd);
 }
 
 #ifdef OPENCV
 typedef struct {
-	float w, h;
+    float w, h;
 } anchors_t;
 
 int anchors_comparator(const void *pa, const void *pb)
 {
-	anchors_t a = *(anchors_t *)pa;
-	anchors_t b = *(anchors_t *)pb;
-	float diff = b.w*b.h - a.w*a.h;
-	if (diff < 0) return 1;
-	else if (diff > 0) return -1;
-	return 0;
+    anchors_t a = *(anchors_t *)pa;
+    anchors_t b = *(anchors_t *)pb;
+    float diff = b.w*b.h - a.w*a.h;
+    if (diff < 0) return 1;
+    else if (diff > 0) return -1;
+    return 0;
 }
 
 void calc_anchors(char *datacfg, int num_of_clusters, int width, int height, int show)
 {
-	printf("\n num_of_clusters = %d, width = %d, height = %d \n", num_of_clusters, width, height);
-	if (width < 0 || height < 0) {
-		printf("Usage: darknet detector calc_anchors data/voc.data -num_of_clusters 9 -width 416 -height 416 \n");
-		printf("Error: set width and height \n");
-		return;
-	}
+    printf("\n num_of_clusters = %d, width = %d, height = %d \n", num_of_clusters, width, height);
+    if (width < 0 || height < 0) {
+        printf("Usage: darknet detector calc_anchors data/voc.data -num_of_clusters 9 -width 416 -height 416 \n");
+        printf("Error: set width and height \n");
+        return;
+    }
 
-	//float pointsdata[] = { 1,1, 2,2, 6,6, 5,5, 10,10 };
-	float *rel_width_height_array = calloc(1000, sizeof(float));
+    //float pointsdata[] = { 1,1, 2,2, 6,6, 5,5, 10,10 };
+    float *rel_width_height_array = calloc(1000, sizeof(float));
 
-	list *options = read_data_cfg(datacfg);
-	char *train_images = option_find_str(options, "train", "data/train.list");
-	list *plist = get_paths(train_images);
-	int number_of_images = plist->size;
-	char **paths = (char **)list_to_array(plist);
+    list *options = read_data_cfg(datacfg);
+    char *train_images = option_find_str(options, "train", "data/train.list");
+    list *plist = get_paths(train_images);
+    int number_of_images = plist->size;
+    char **paths = (char **)list_to_array(plist);
 
-	int number_of_boxes = 0;
-	printf(" read labels from %d images \n", number_of_images);
+    int number_of_boxes = 0;
+    printf(" read labels from %d images \n", number_of_images);
 
-	int i, j;
-	for (i = 0; i < number_of_images; ++i) {
-		char *path = paths[i];
-		char labelpath[4096];
-		find_replace(path, "images", "labels", labelpath);
-		find_replace(labelpath, "JPEGImages", "labels", labelpath);
-		find_replace(labelpath, ".jpg", ".txt", labelpath);
-		find_replace(labelpath, ".png", ".txt", labelpath);
-		find_replace(labelpath, ".bmp", ".txt", labelpath);
-		find_replace(labelpath, ".JPG", ".txt", labelpath);
-		find_replace(labelpath, ".JPEG", ".txt", labelpath);
-		int num_labels = 0;
-		box_label *truth = read_boxes(labelpath, &num_labels);
-		//printf(" new path: %s \n", labelpath);
-		for (j = 0; j < num_labels; ++j)
-		{
-			number_of_boxes++;
-			rel_width_height_array = realloc(rel_width_height_array, 2 * number_of_boxes * sizeof(float));
-			rel_width_height_array[number_of_boxes * 2 - 2] = truth[j].w * width;
-			rel_width_height_array[number_of_boxes * 2 - 1] = truth[j].h * height;
-			printf("\r loaded \t image: %d \t box: %d", i+1, number_of_boxes);
-		}
-	}
-	printf("\n all loaded. \n");
+    int i, j;
+    for (i = 0; i < number_of_images; ++i) {
+        char *path = paths[i];
+        char labelpath[4096];
+        replace_image_to_label(path, labelpath);
 
-	CvMat* points = cvCreateMat(number_of_boxes, 2, CV_32FC1);
-	CvMat* centers = cvCreateMat(num_of_clusters, 2, CV_32FC1);
-	CvMat* labels = cvCreateMat(number_of_boxes, 1, CV_32SC1);
+        int num_labels = 0;
+        box_label *truth = read_boxes(labelpath, &num_labels);
+        //printf(" new path: %s \n", labelpath);
+        char buff[1024];
+        for (j = 0; j < num_labels; ++j)
+        {
+            if (truth[j].x > 1 || truth[j].x <= 0 || truth[j].y > 1 || truth[j].y <= 0 ||
+                truth[j].w > 1 || truth[j].w <= 0 || truth[j].h > 1 || truth[j].h <= 0)
+            {
+                printf("\n\nWrong label: %s - j = %d, x = %f, y = %f, width = %f, height = %f \n",
+                    labelpath, j, truth[j].x, truth[j].y, truth[j].w, truth[j].h);
+                sprintf(buff, "echo \"Wrong label: %s - j = %d, x = %f, y = %f, width = %f, height = %f\" >> bad_label.list",
+                    labelpath, j, truth[j].x, truth[j].y, truth[j].w, truth[j].h);
+                system(buff);
+            }
+            number_of_boxes++;
+            rel_width_height_array = realloc(rel_width_height_array, 2 * number_of_boxes * sizeof(float));
+            rel_width_height_array[number_of_boxes * 2 - 2] = truth[j].w * width;
+            rel_width_height_array[number_of_boxes * 2 - 1] = truth[j].h * height;
+            printf("\r loaded \t image: %d \t box: %d", i+1, number_of_boxes);
+        }
+    }
+    printf("\n all loaded. \n");
 
-	for (i = 0; i < number_of_boxes; ++i) {
-		points->data.fl[i * 2] = rel_width_height_array[i * 2];
-		points->data.fl[i * 2 + 1] = rel_width_height_array[i * 2 + 1];
-		//cvSet1D(points, i * 2, cvScalar(rel_width_height_array[i * 2], 0, 0, 0));
-		//cvSet1D(points, i * 2 + 1, cvScalar(rel_width_height_array[i * 2 + 1], 0, 0, 0));
-	}
+    CvMat* points = cvCreateMat(number_of_boxes, 2, CV_32FC1);
+    CvMat* centers = cvCreateMat(num_of_clusters, 2, CV_32FC1);
+    CvMat* labels = cvCreateMat(number_of_boxes, 1, CV_32SC1);
+
+    for (i = 0; i < number_of_boxes; ++i) {
+        points->data.fl[i * 2] = rel_width_height_array[i * 2];
+        points->data.fl[i * 2 + 1] = rel_width_height_array[i * 2 + 1];
+        //cvSet1D(points, i * 2, cvScalar(rel_width_height_array[i * 2], 0, 0, 0));
+        //cvSet1D(points, i * 2 + 1, cvScalar(rel_width_height_array[i * 2 + 1], 0, 0, 0));
+    }
 
 
-	const int attemps = 10;
-	double compactness;
+    const int attemps = 10;
+    double compactness;
 
-	enum {
-		KMEANS_RANDOM_CENTERS = 0,
-		KMEANS_USE_INITIAL_LABELS = 1,
-		KMEANS_PP_CENTERS = 2
-	};
-	
-	printf("\n calculating k-means++ ...");
-	// Should be used: distance(box, centroid) = 1 - IoU(box, centroid)
-	cvKMeans2(points, num_of_clusters, labels, 
-		cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 10000, 0), attemps, 
-		0, KMEANS_PP_CENTERS,
-		centers, &compactness);
+    enum {
+        KMEANS_RANDOM_CENTERS = 0,
+        KMEANS_USE_INITIAL_LABELS = 1,
+        KMEANS_PP_CENTERS = 2
+    };
 
-	// sort anchors
-	qsort(centers->data.fl, num_of_clusters, 2*sizeof(float), anchors_comparator);
+    printf("\n calculating k-means++ ...");
+    // Should be used: distance(box, centroid) = 1 - IoU(box, centroid)
+    cvKMeans2(points, num_of_clusters, labels,
+        cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 10000, 0), attemps,
+        0, KMEANS_PP_CENTERS,
+        centers, &compactness);
 
-	//orig 2.0 anchors = 1.08,1.19,  3.42,4.41,  6.63,11.38,  9.42,5.11,  16.62,10.52
-	//float orig_anch[] = { 1.08,1.19,  3.42,4.41,  6.63,11.38,  9.42,5.11,  16.62,10.52 };
-	// worse than ours (even for 19x19 final size - for input size 608x608)
+    // sort anchors
+    qsort(centers->data.fl, num_of_clusters, 2*sizeof(float), anchors_comparator);
 
-	//orig anchors = 1.3221,1.73145, 3.19275,4.00944, 5.05587,8.09892, 9.47112,4.84053, 11.2364,10.0071
-	//float orig_anch[] = { 1.3221,1.73145, 3.19275,4.00944, 5.05587,8.09892, 9.47112,4.84053, 11.2364,10.0071 };
-	// orig (IoU=59.90%) better than ours (59.75%)
+    //orig 2.0 anchors = 1.08,1.19,  3.42,4.41,  6.63,11.38,  9.42,5.11,  16.62,10.52
+    //float orig_anch[] = { 1.08,1.19,  3.42,4.41,  6.63,11.38,  9.42,5.11,  16.62,10.52 };
+    // worse than ours (even for 19x19 final size - for input size 608x608)
 
-	//gen_anchors.py = 1.19, 1.99, 2.79, 4.60, 4.53, 8.92, 8.06, 5.29, 10.32, 10.66
-	//float orig_anch[] = { 1.19, 1.99, 2.79, 4.60, 4.53, 8.92, 8.06, 5.29, 10.32, 10.66 };
+    //orig anchors = 1.3221,1.73145, 3.19275,4.00944, 5.05587,8.09892, 9.47112,4.84053, 11.2364,10.0071
+    //float orig_anch[] = { 1.3221,1.73145, 3.19275,4.00944, 5.05587,8.09892, 9.47112,4.84053, 11.2364,10.0071 };
+    // orig (IoU=59.90%) better than ours (59.75%)
 
-	// ours: anchors = 9.3813,6.0095, 3.3999,5.3505, 10.9476,11.1992, 5.0161,9.8314, 1.5003,2.1595
-	//float orig_anch[] = { 9.3813,6.0095, 3.3999,5.3505, 10.9476,11.1992, 5.0161,9.8314, 1.5003,2.1595 };
-	//for (i = 0; i < num_of_clusters * 2; ++i) centers->data.fl[i] = orig_anch[i];
-	
-	//for (i = 0; i < number_of_boxes; ++i)
-	//	printf("%2.2f,%2.2f, ", points->data.fl[i * 2], points->data.fl[i * 2 + 1]);
+    //gen_anchors.py = 1.19, 1.99, 2.79, 4.60, 4.53, 8.92, 8.06, 5.29, 10.32, 10.66
+    //float orig_anch[] = { 1.19, 1.99, 2.79, 4.60, 4.53, 8.92, 8.06, 5.29, 10.32, 10.66 };
 
-	float avg_iou = 0;
-	for (i = 0; i < number_of_boxes; ++i) {
-		float box_w = points->data.fl[i * 2];
-		float box_h = points->data.fl[i * 2 + 1];
-		//int cluster_idx = labels->data.i[i];		
-		int cluster_idx = 0;
-		float min_dist = FLT_MAX;
-		for (j = 0; j < num_of_clusters; ++j) {
-			float anchor_w = centers->data.fl[j * 2];
-			float anchor_h = centers->data.fl[j * 2 + 1];
-			float w_diff = anchor_w - box_w;
-			float h_diff = anchor_h - box_h;
-			float distance = sqrt(w_diff*w_diff + h_diff*h_diff);
-			if (distance < min_dist) min_dist = distance, cluster_idx = j;
-		}
-		
-		float anchor_w = centers->data.fl[cluster_idx * 2];
-		float anchor_h = centers->data.fl[cluster_idx * 2 + 1];
-		float min_w = (box_w < anchor_w) ? box_w : anchor_w;
-		float min_h = (box_h < anchor_h) ? box_h : anchor_h;
-		float box_intersect = min_w*min_h;
-		float box_union = box_w*box_h + anchor_w*anchor_h - box_intersect;
-		float iou = box_intersect / box_union;
-		if (iou > 1 || iou < 0) {
-			printf(" i = %d, box_w = %d, box_h = %d, anchor_w = %d, anchor_h = %d, iou = %f \n",
-				i, box_w, box_h, anchor_w, anchor_h, iou);
-		}
-		else avg_iou += iou;
-	}
-	avg_iou = 100 * avg_iou / number_of_boxes;
-	printf("\n avg IoU = %2.2f %% \n", avg_iou);
+    // ours: anchors = 9.3813,6.0095, 3.3999,5.3505, 10.9476,11.1992, 5.0161,9.8314, 1.5003,2.1595
+    //float orig_anch[] = { 9.3813,6.0095, 3.3999,5.3505, 10.9476,11.1992, 5.0161,9.8314, 1.5003,2.1595 };
+    //for (i = 0; i < num_of_clusters * 2; ++i) centers->data.fl[i] = orig_anch[i];
 
-	char buff[1024];
-	FILE* fw = fopen("anchors.txt", "wb");
-	printf("\nSaving anchors to the file: anchors.txt \n");
-	printf("anchors = ");
-	for (i = 0; i < num_of_clusters; ++i) {
-		sprintf(buff, "%2.4f,%2.4f", centers->data.fl[i * 2], centers->data.fl[i * 2 + 1]);
-		printf("%s", buff);
-		fwrite(buff, sizeof(char), strlen(buff), fw);
-		if (i + 1 < num_of_clusters) {
-			fwrite(", ", sizeof(char), 2, fw);
-			printf(", ");
-		}
-	}
-	printf("\n");
-	fclose(fw);
+    //for (i = 0; i < number_of_boxes; ++i)
+    //    printf("%2.2f,%2.2f, ", points->data.fl[i * 2], points->data.fl[i * 2 + 1]);
 
-	if (show) {
-		size_t img_size = 700;
-		IplImage* img = cvCreateImage(cvSize(img_size, img_size), 8, 3);
-		cvZero(img);
-		for (j = 0; j < num_of_clusters; ++j) {
-			CvPoint pt1, pt2;
-			pt1.x = pt1.y = 0;
-			pt2.x = centers->data.fl[j * 2] * img_size / width;
-			pt2.y = centers->data.fl[j * 2 + 1] * img_size / height;
-			cvRectangle(img, pt1, pt2, CV_RGB(255, 255, 255), 1, 8, 0);
-		}
+    printf("\n");
+    float avg_iou = 0;
+    for (i = 0; i < number_of_boxes; ++i) {
+        float box_w = points->data.fl[i * 2];
+        float box_h = points->data.fl[i * 2 + 1];
+        //int cluster_idx = labels->data.i[i];
+        int cluster_idx = 0;
+        float min_dist = FLT_MAX;
+        for (j = 0; j < num_of_clusters; ++j) {
+            float anchor_w = centers->data.fl[j * 2];
+            float anchor_h = centers->data.fl[j * 2 + 1];
+            float w_diff = anchor_w - box_w;
+            float h_diff = anchor_h - box_h;
+            float distance = sqrt(w_diff*w_diff + h_diff*h_diff);
+            if (distance < min_dist) min_dist = distance, cluster_idx = j;
+        }
 
-		for (i = 0; i < number_of_boxes; ++i) {
-			CvPoint pt;
-			pt.x = points->data.fl[i * 2] * img_size / width;
-			pt.y = points->data.fl[i * 2 + 1] * img_size / height;
-			int cluster_idx = labels->data.i[i];
-			int red_id = (cluster_idx * (uint64_t)123 + 55) % 255;
-			int green_id = (cluster_idx * (uint64_t)321 + 33) % 255;
-			int blue_id = (cluster_idx * (uint64_t)11 + 99) % 255;
-			cvCircle(img, pt, 1, CV_RGB(red_id, green_id, blue_id), CV_FILLED, 8, 0);
-			//if(pt.x > img_size || pt.y > img_size) printf("\n pt.x = %d, pt.y = %d \n", pt.x, pt.y);
-		}
-		cvShowImage("clusters", img);
-		cvWaitKey(0);
-		cvReleaseImage(&img);
-		cvDestroyAllWindows();
-	}
+        float anchor_w = centers->data.fl[cluster_idx * 2];
+        float anchor_h = centers->data.fl[cluster_idx * 2 + 1];
+        float min_w = (box_w < anchor_w) ? box_w : anchor_w;
+        float min_h = (box_h < anchor_h) ? box_h : anchor_h;
+        float box_intersect = min_w*min_h;
+        float box_union = box_w*box_h + anchor_w*anchor_h - box_intersect;
+        float iou = box_intersect / box_union;
+        if (iou > 1 || iou < 0) { // || box_w > width || box_h > height) {
+            printf(" Wrong label: i = %d, box_w = %d, box_h = %d, anchor_w = %d, anchor_h = %d, iou = %f \n",
+                i, box_w, box_h, anchor_w, anchor_h, iou);
+        }
+        else avg_iou += iou;
+    }
+    avg_iou = 100 * avg_iou / number_of_boxes;
+    printf("\n avg IoU = %2.2f %% \n", avg_iou);
 
-	free(rel_width_height_array);
-	cvReleaseMat(&points);
-	cvReleaseMat(&centers);
-	cvReleaseMat(&labels);
+    char buff[1024];
+    FILE* fw = fopen("anchors.txt", "wb");
+    printf("\nSaving anchors to the file: anchors.txt \n");
+    printf("anchors = ");
+    for (i = 0; i < num_of_clusters; ++i) {
+        sprintf(buff, "%2.4f,%2.4f", centers->data.fl[i * 2], centers->data.fl[i * 2 + 1]);
+        printf("%s", buff);
+        fwrite(buff, sizeof(char), strlen(buff), fw);
+        if (i + 1 < num_of_clusters) {
+            fwrite(", ", sizeof(char), 2, fw);
+            printf(", ");
+        }
+    }
+    printf("\n");
+    fclose(fw);
+
+    if (show) {
+        size_t img_size = 700;
+        IplImage* img = cvCreateImage(cvSize(img_size, img_size), 8, 3);
+        cvZero(img);
+        for (j = 0; j < num_of_clusters; ++j) {
+            CvPoint pt1, pt2;
+            pt1.x = pt1.y = 0;
+            pt2.x = centers->data.fl[j * 2] * img_size / width;
+            pt2.y = centers->data.fl[j * 2 + 1] * img_size / height;
+            cvRectangle(img, pt1, pt2, CV_RGB(255, 255, 255), 1, 8, 0);
+        }
+
+        for (i = 0; i < number_of_boxes; ++i) {
+            CvPoint pt;
+            pt.x = points->data.fl[i * 2] * img_size / width;
+            pt.y = points->data.fl[i * 2 + 1] * img_size / height;
+            int cluster_idx = labels->data.i[i];
+            int red_id = (cluster_idx * (uint64_t)123 + 55) % 255;
+            int green_id = (cluster_idx * (uint64_t)321 + 33) % 255;
+            int blue_id = (cluster_idx * (uint64_t)11 + 99) % 255;
+            cvCircle(img, pt, 1, CV_RGB(red_id, green_id, blue_id), CV_FILLED, 8, 0);
+            //if(pt.x > img_size || pt.y > img_size) printf("\n pt.x = %d, pt.y = %d \n", pt.x, pt.y);
+        }
+        cvShowImage("clusters", img);
+        cvWaitKey(0);
+        cvReleaseImage(&img);
+        cvDestroyAllWindows();
+    }
+
+    free(rel_width_height_array);
+    cvReleaseMat(&points);
+    cvReleaseMat(&centers);
+    cvReleaseMat(&labels);
 }
 #else
 void calc_anchors(char *datacfg, int num_of_clusters, int width, int height, int show) {
-	printf(" k-means++ can't be used without OpenCV, because there is used cvKMeans2 implementation \n");
+    printf(" k-means++ can't be used without OpenCV, because there is used cvKMeans2 implementation \n");
 }
 #endif // OPENCV
 
-void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh, float hier_thresh, int dont_show)
+void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh,
+                   float hier_thresh, int dont_show, int ext_output, int save_labels)
 {
     list *options = read_data_cfg(datacfg);
     char *name_list = option_find_str(options, "names", "data/names.list");
-    char **names = get_labels(name_list);
+    int names_size = 0;
+    char **names = get_labels_custom(name_list, &names_size); //get_labels(name_list);
 
     image **alphabet = load_alphabet();
     network net = parse_network_cfg_custom(cfgfile, 1); // set batch=1
@@ -1053,18 +1094,24 @@
         load_weights(&net, weightfile);
     }
     //set_batch_network(&net, 1);
-	fuse_conv_batchnorm(net);
+    fuse_conv_batchnorm(net);
+    calculate_binary_weights(net);
+    if (net.layers[net.n - 1].classes != names_size) {
+        printf(" Error: in the file %s number of names %d that isn't equal to classes=%d in the file %s \n",
+            name_list, names_size, net.layers[net.n - 1].classes, cfgfile);
+        if(net.layers[net.n - 1].classes > names_size) getchar();
+    }
     srand(2222222);
     double time;
     char buff[256];
     char *input = buff;
     int j;
-    float nms=.45;	// 0.4F
+    float nms=.45;    // 0.4F
     while(1){
         if(filename){
             strncpy(input, filename, 256);
-			if(strlen(input) > 0)
-				if (input[strlen(input) - 1] == 0x0d) input[strlen(input) - 1] = 0;
+            if(strlen(input) > 0)
+                if (input[strlen(input) - 1] == 0x0d) input[strlen(input) - 1] = 0;
         } else {
             printf("Enter Image Path: ");
             fflush(stdout);
@@ -1072,10 +1119,10 @@
             if(!input) return;
             strtok(input, "\n");
         }
-        image im = load_image_color(input,0,0);
-		int letterbox = 0;
-        //image sized = resize_image(im, net.w, net.h);
-		image sized = letterbox_image(im, net.w, net.h); letterbox = 1;
+        image im = load_image(input,0,0,net.c);
+        int letterbox = 0;
+        image sized = resize_image(im, net.w, net.h);
+        //image sized = letterbox_image(im, net.w, net.h); letterbox = 1;
         layer l = net.layers[net.n-1];
 
         //box *boxes = calloc(l.w*l.h*l.n, sizeof(box));
@@ -1085,66 +1132,97 @@
         float *X = sized.data;
         time= what_time_is_it_now();
         network_predict(net, X);
-		//network_predict_image(&net, im); letterbox = 1;
+        //network_predict_image(&net, im); letterbox = 1;
         printf("%s: Predicted in %f seconds.\n", input, (what_time_is_it_now()-time));
         //get_region_boxes(l, 1, 1, thresh, probs, boxes, 0, 0);
-		// if (nms) do_nms_sort_v2(boxes, probs, l.w*l.h*l.n, l.classes, nms);
-		//draw_detections(im, l.w*l.h*l.n, thresh, boxes, probs, names, alphabet, l.classes);
-		int nboxes = 0;
-		detection *dets = get_network_boxes(&net, im.w, im.h, thresh, hier_thresh, 0, 1, &nboxes, letterbox);
-		if (nms) do_nms_sort(dets, nboxes, l.classes, nms);
-		draw_detections_v3(im, dets, nboxes, thresh, names, alphabet, l.classes);
-		free_detections(dets, nboxes);
+        // if (nms) do_nms_sort_v2(boxes, probs, l.w*l.h*l.n, l.classes, nms);
+        //draw_detections(im, l.w*l.h*l.n, thresh, boxes, probs, names, alphabet, l.classes);
+        int nboxes = 0;
+        detection *dets = get_network_boxes(&net, im.w, im.h, thresh, hier_thresh, 0, 1, &nboxes, letterbox);
+        if (nms) do_nms_sort(dets, nboxes, l.classes, nms);
+        draw_detections_v3(im, dets, nboxes, thresh, names, alphabet, l.classes, ext_output);
         save_image(im, "predictions");
-		if (!dont_show) {
-			show_image(im, "predictions");
-		}
+        if (!dont_show) {
+            show_image(im, "predictions");
+        }
 
+        // pseudo labeling concept - fast.ai
+        if(save_labels)
+        {
+            char labelpath[4096];
+            replace_image_to_label(input, labelpath);
+
+            FILE* fw = fopen(labelpath, "wb");
+            int i;
+            for (i = 0; i < nboxes; ++i) {
+                char buff[1024];
+                int class_id = -1;
+                float prob = 0;
+                for (j = 0; j < l.classes; ++j) {
+                    if (dets[i].prob[j] > thresh && dets[i].prob[j] > prob) {
+                        prob = dets[i].prob[j];
+                        class_id = j;
+                    }
+                }
+                if (class_id >= 0) {
+                    sprintf(buff, "%d %2.4f %2.4f %2.4f %2.4f\n", class_id, dets[i].bbox.x, dets[i].bbox.y, dets[i].bbox.w, dets[i].bbox.h);
+                    fwrite(buff, sizeof(char), strlen(buff), fw);
+                }
+            }
+            fclose(fw);
+        }
+
+        free_detections(dets, nboxes);
         free_image(im);
         free_image(sized);
         //free(boxes);
         //free_ptrs((void **)probs, l.w*l.h*l.n);
 #ifdef OPENCV
-		if (!dont_show) {
-			cvWaitKey(0);
-			cvDestroyAllWindows();
-		}
+        if (!dont_show) {
+            cvWaitKey(0);
+            cvDestroyAllWindows();
+        }
 #endif
         if (filename) break;
     }
 
-	// free memory
-	free_ptrs(names, net.layers[net.n - 1].classes);
-	free_list(options);
+    // free memory
+    free_ptrs(names, net.layers[net.n - 1].classes);
+    free_list_contents_kvp(options);
+    free_list(options);
 
-	int i;
-	const int nsize = 8;
-	for (j = 0; j < nsize; ++j) {
-		for (i = 32; i < 127; ++i) {
-			free_image(alphabet[j][i]);
-		}
-		free(alphabet[j]);
-	}
-	free(alphabet);
+    int i;
+    const int nsize = 8;
+    for (j = 0; j < nsize; ++j) {
+        for (i = 32; i < 127; ++i) {
+            free_image(alphabet[j][i]);
+        }
+        free(alphabet[j]);
+    }
+    free(alphabet);
 
-	free_network(net);
+    free_network(net);
 }
 
 void run_detector(int argc, char **argv)
 {
-	int dont_show = find_arg(argc, argv, "-dont_show");
-	int show = find_arg(argc, argv, "-show");
-	int http_stream_port = find_int_arg(argc, argv, "-http_port", -1);
-	char *out_filename = find_char_arg(argc, argv, "-out_filename", 0);
-	char *outfile = find_char_arg(argc, argv, "-out", 0);
+    int dont_show = find_arg(argc, argv, "-dont_show");
+    int show = find_arg(argc, argv, "-show");
+    int http_stream_port = find_int_arg(argc, argv, "-http_port", -1);
+    char *out_filename = find_char_arg(argc, argv, "-out_filename", 0);
+    char *outfile = find_char_arg(argc, argv, "-out", 0);
     char *prefix = find_char_arg(argc, argv, "-prefix", 0);
-    float thresh = find_float_arg(argc, argv, "-thresh", .25);	// 0.24
-	float hier_thresh = find_float_arg(argc, argv, "-hier", .5);
+    float thresh = find_float_arg(argc, argv, "-thresh", .25);    // 0.24
+    float hier_thresh = find_float_arg(argc, argv, "-hier", .5);
     int cam_index = find_int_arg(argc, argv, "-c", 0);
     int frame_skip = find_int_arg(argc, argv, "-s", 0);
-	int num_of_clusters = find_int_arg(argc, argv, "-num_of_clusters", 5);
-	int width = find_int_arg(argc, argv, "-width", -1);
-	int height = find_int_arg(argc, argv, "-height", -1);
+    int num_of_clusters = find_int_arg(argc, argv, "-num_of_clusters", 5);
+    int width = find_int_arg(argc, argv, "-width", -1);
+    int height = find_int_arg(argc, argv, "-height", -1);
+    // extended output in test mode (output of rect bound coords)
+    // and for recall mode (extended output table-like format with results for best_class fit)
+    int ext_output = find_arg(argc, argv, "-ext_output");
+    int save_labels = find_arg(argc, argv, "-save_labels");
     if(argc < 4){
         fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
         return;
@@ -1177,26 +1255,29 @@
     char *datacfg = argv[3];
     char *cfg = argv[4];
     char *weights = (argc > 5) ? argv[5] : 0;
-	if(weights)
-		if(strlen(weights) > 0)
-			if (weights[strlen(weights) - 1] == 0x0d) weights[strlen(weights) - 1] = 0;
+    if(weights)
+        if(strlen(weights) > 0)
+            if (weights[strlen(weights) - 1] == 0x0d) weights[strlen(weights) - 1] = 0;
     char *filename = (argc > 6) ? argv[6]: 0;
-    if(0==strcmp(argv[2], "test")) test_detector(datacfg, cfg, weights, filename, thresh, hier_thresh, dont_show);
+    if(0==strcmp(argv[2], "test")) test_detector(datacfg, cfg, weights, filename, thresh, hier_thresh, dont_show, ext_output, save_labels);
     else if(0==strcmp(argv[2], "train")) train_detector(datacfg, cfg, weights, gpus, ngpus, clear, dont_show);
     else if(0==strcmp(argv[2], "valid")) validate_detector(datacfg, cfg, weights, outfile);
     else if(0==strcmp(argv[2], "recall")) validate_detector_recall(datacfg, cfg, weights);
-	else if(0==strcmp(argv[2], "map")) validate_detector_map(datacfg, cfg, weights, thresh);
-	else if(0==strcmp(argv[2], "calc_anchors")) calc_anchors(datacfg, num_of_clusters, width, height, show);
+    else if(0==strcmp(argv[2], "map")) validate_detector_map(datacfg, cfg, weights, thresh);
+    else if(0==strcmp(argv[2], "calc_anchors")) calc_anchors(datacfg, num_of_clusters, width, height, show);
     else if(0==strcmp(argv[2], "demo")) {
         list *options = read_data_cfg(datacfg);
         int classes = option_find_int(options, "classes", 20);
         char *name_list = option_find_str(options, "names", "data/names.list");
         char **names = get_labels(name_list);
-		if(filename)
-			if(strlen(filename) > 0)
-				if (filename[strlen(filename) - 1] == 0x0d) filename[strlen(filename) - 1] = 0;
+        if(filename)
+            if(strlen(filename) > 0)
+                if (filename[strlen(filename) - 1] == 0x0d) filename[strlen(filename) - 1] = 0;
         demo(cfg, weights, thresh, hier_thresh, cam_index, filename, names, classes, frame_skip, prefix, out_filename,
-			http_stream_port, dont_show);
+            http_stream_port, dont_show, ext_output);
+
+        free_list_contents_kvp(options);
+        free_list(options);
     }
-	else printf(" There isn't such command: %s", argv[2]);
+    else printf(" There isn't such command: %s", argv[2]);
 }

--
Gitblit v1.10.0