From 5a47c46b39475fc3581b9819f488b977ea1beca3 Mon Sep 17 00:00:00 2001
From: Edmond Yoo <hj3yoo@uwaterloo.ca>
Date: Sun, 16 Sep 2018 03:11:04 +0000
Subject: [PATCH] Moving files from MTGCardDetector

---
 src/network.c |  927 +++++++++++++++++++++++++++++++++++++++++++++++++--------
 1 files changed, 796 insertions(+), 131 deletions(-)

diff --git a/src/network.c b/src/network.c
index a77d607..2ad5141 100644
--- a/src/network.c
+++ b/src/network.c
@@ -1,187 +1,501 @@
 #include <stdio.h>
+#include <time.h>
+#include <assert.h>
 #include "network.h"
 #include "image.h"
 #include "data.h"
+#include "utils.h"
+#include "blas.h"
 
+#include "crop_layer.h"
 #include "connected_layer.h"
+#include "gru_layer.h"
+#include "rnn_layer.h"
+#include "crnn_layer.h"
+#include "local_layer.h"
 #include "convolutional_layer.h"
+#include "activation_layer.h"
+#include "detection_layer.h"
+#include "region_layer.h"
+#include "normalization_layer.h"
+#include "batchnorm_layer.h"
 #include "maxpool_layer.h"
+#include "reorg_layer.h"
+#include "avgpool_layer.h"
+#include "cost_layer.h"
+#include "softmax_layer.h"
+#include "dropout_layer.h"
+#include "route_layer.h"
+#include "shortcut_layer.h"
+#include "yolo_layer.h"
+#include "upsample_layer.h"
+#include "parser.h"
 
-network make_network(int n)
+network *load_network_custom(char *cfg, char *weights, int clear, int batch)
 {
-    network net;
-    net.n = n;
-    net.layers = calloc(net.n, sizeof(void *));
-    net.types = calloc(net.n, sizeof(LAYER_TYPE));
+    printf(" Try to load cfg: %s, weights: %s, clear = %d \n", cfg, weights, clear);
+    network *net = calloc(1, sizeof(network));
+    *net = parse_network_cfg_custom(cfg, batch);
+    if (weights && weights[0] != 0) {
+        load_weights(net, weights);
+    }
+    if (clear) (*net->seen) = 0;
     return net;
 }
 
-void forward_network(network net, double *input)
+network *load_network(char *cfg, char *weights, int clear)
 {
+    return load_network_custom(cfg, weights, clear, 0);
+}
+
+int get_current_batch(network net)
+{
+    int batch_num = (*net.seen)/(net.batch*net.subdivisions);
+    return batch_num;
+}
+
+void reset_momentum(network net)
+{
+    if (net.momentum == 0) return;
+    net.learning_rate = 0;
+    net.momentum = 0;
+    net.decay = 0;
+    #ifdef GPU
+        //if(net.gpu_index >= 0) update_network_gpu(net);
+    #endif
+}
+
+void reset_network_state(network *net, int b)
+{
+    int i;
+    for (i = 0; i < net->n; ++i) {
+#ifdef GPU
+        layer l = net->layers[i];
+        if (l.state_gpu) {
+            fill_ongpu(l.outputs, 0, l.state_gpu + l.outputs*b, 1);
+        }
+        if (l.h_gpu) {
+            fill_ongpu(l.outputs, 0, l.h_gpu + l.outputs*b, 1);
+        }
+#endif
+    }
+}
+
+void reset_rnn(network *net)
+{
+    reset_network_state(net, 0);
+}
+
+float get_current_rate(network net)
+{
+    int batch_num = get_current_batch(net);
+    int i;
+    float rate;
+    if (batch_num < net.burn_in) return net.learning_rate * pow((float)batch_num / net.burn_in, net.power);
+    switch (net.policy) {
+        case CONSTANT:
+            return net.learning_rate;
+        case STEP:
+            return net.learning_rate * pow(net.scale, batch_num/net.step);
+        case STEPS:
+            rate = net.learning_rate;
+            for(i = 0; i < net.num_steps; ++i){
+                if(net.steps[i] > batch_num) return rate;
+                rate *= net.scales[i];
+                //if(net.steps[i] > batch_num - 1 && net.scales[i] > 1) reset_momentum(net);
+            }
+            return rate;
+        case EXP:
+            return net.learning_rate * pow(net.gamma, batch_num);
+        case POLY:
+            return net.learning_rate * pow(1 - (float)batch_num / net.max_batches, net.power);
+            //if (batch_num < net.burn_in) return net.learning_rate * pow((float)batch_num / net.burn_in, net.power);
+            //return net.learning_rate * pow(1 - (float)batch_num / net.max_batches, net.power);
+        case RANDOM:
+            return net.learning_rate * pow(rand_uniform(0,1), net.power);
+        case SIG:
+            return net.learning_rate * (1./(1.+exp(net.gamma*(batch_num - net.step))));
+        default:
+            fprintf(stderr, "Policy is weird!\n");
+            return net.learning_rate;
+    }
+}
+
+char *get_layer_string(LAYER_TYPE a)
+{
+    switch(a){
+        case CONVOLUTIONAL:
+            return "convolutional";
+        case ACTIVE:
+            return "activation";
+        case LOCAL:
+            return "local";
+        case DECONVOLUTIONAL:
+            return "deconvolutional";
+        case CONNECTED:
+            return "connected";
+        case RNN:
+            return "rnn";
+        case GRU:
+            return "gru";
+        case CRNN:
+            return "crnn";
+        case MAXPOOL:
+            return "maxpool";
+        case REORG:
+            return "reorg";
+        case AVGPOOL:
+            return "avgpool";
+        case SOFTMAX:
+            return "softmax";
+        case DETECTION:
+            return "detection";
+        case REGION:
+            return "region";
+        case DROPOUT:
+            return "dropout";
+        case CROP:
+            return "crop";
+        case COST:
+            return "cost";
+        case ROUTE:
+            return "route";
+        case SHORTCUT:
+            return "shortcut";
+        case NORMALIZATION:
+            return "normalization";
+        case BATCHNORM:
+            return "batchnorm";
+        default:
+            break;
+    }
+    return "none";
+}
+
+network make_network(int n)
+{
+    network net = {0};
+    net.n = n;
+    net.layers = calloc(net.n, sizeof(layer));
+    net.seen = calloc(1, sizeof(int));
+#ifdef GPU
+    net.input_gpu = calloc(1, sizeof(float *));
+    net.truth_gpu = calloc(1, sizeof(float *));
+
+    net.input16_gpu = calloc(1, sizeof(float *));
+    net.output16_gpu = calloc(1, sizeof(float *));
+    net.max_input16_size = calloc(1, sizeof(size_t));
+    net.max_output16_size = calloc(1, sizeof(size_t));
+#endif
+    return net;
+}
+
+void forward_network(network net, network_state state)
+{
+    state.workspace = net.workspace;
     int i;
     for(i = 0; i < net.n; ++i){
-        if(net.types[i] == CONVOLUTIONAL){
-            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-            forward_convolutional_layer(layer, input);
-            input = layer.output;
+        state.index = i;
+        layer l = net.layers[i];
+        if(l.delta){
+            scal_cpu(l.outputs * l.batch, 0, l.delta, 1);
         }
-        else if(net.types[i] == CONNECTED){
-            connected_layer layer = *(connected_layer *)net.layers[i];
-            forward_connected_layer(layer, input);
-            input = layer.output;
-        }
-        else if(net.types[i] == MAXPOOL){
-            maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-            forward_maxpool_layer(layer, input);
-            input = layer.output;
-        }
+        l.forward(l, state);
+        state.input = l.output;
     }
 }
 
-void update_network(network net, double step)
+void update_network(network net)
 {
     int i;
+    int update_batch = net.batch*net.subdivisions;
+    float rate = get_current_rate(net);
     for(i = 0; i < net.n; ++i){
-        if(net.types[i] == CONVOLUTIONAL){
-            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-            update_convolutional_layer(layer, step);
-        }
-        else if(net.types[i] == MAXPOOL){
-            //maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-        }
-        else if(net.types[i] == CONNECTED){
-            connected_layer layer = *(connected_layer *)net.layers[i];
-            update_connected_layer(layer, step, .3, 0);
+        layer l = net.layers[i];
+        if(l.update){
+            l.update(l, update_batch, rate, net.momentum, net.decay);
         }
     }
 }
 
-double *get_network_output_layer(network net, int i)
+float *get_network_output(network net)
 {
-    if(net.types[i] == CONVOLUTIONAL){
-        convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-        return layer.output;
-    } else if(net.types[i] == MAXPOOL){
-        maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-        return layer.output;
-    } else if(net.types[i] == CONNECTED){
-        connected_layer layer = *(connected_layer *)net.layers[i];
-        return layer.output;
-    }
-    return 0;
-}
-double *get_network_output(network net)
-{
-    return get_network_output_layer(net, net.n-1);
+#ifdef GPU
+    if (gpu_index >= 0) return get_network_output_gpu(net);
+#endif
+    int i;
+    for(i = net.n-1; i > 0; --i) if(net.layers[i].type != COST) break;
+    return net.layers[i].output;
 }
 
-double *get_network_delta_layer(network net, int i)
-{
-    if(net.types[i] == CONVOLUTIONAL){
-        convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-        return layer.delta;
-    } else if(net.types[i] == MAXPOOL){
-        maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-        return layer.delta;
-    } else if(net.types[i] == CONNECTED){
-        connected_layer layer = *(connected_layer *)net.layers[i];
-        return layer.delta;
-    }
-    return 0;
-}
-
-double *get_network_delta(network net)
-{
-    return get_network_delta_layer(net, net.n-1);
-}
-
-void learn_network(network net, double *input)
+float get_network_cost(network net)
 {
     int i;
-    double *prev_input;
-    double *prev_delta;
+    float sum = 0;
+    int count = 0;
+    for(i = 0; i < net.n; ++i){
+        if(net.layers[i].cost){
+            sum += net.layers[i].cost[0];
+            ++count;
+        }
+    }
+    return sum/count;
+}
+
+int get_predicted_class_network(network net)
+{
+    float *out = get_network_output(net);
+    int k = get_network_output_size(net);
+    return max_index(out, k);
+}
+
+void backward_network(network net, network_state state)
+{
+    int i;
+    float *original_input = state.input;
+    float *original_delta = state.delta;
+    state.workspace = net.workspace;
     for(i = net.n-1; i >= 0; --i){
+        state.index = i;
         if(i == 0){
-            prev_input = input;
-            prev_delta = 0;
+            state.input = original_input;
+            state.delta = original_delta;
         }else{
-            prev_input = get_network_output_layer(net, i-1);
-            prev_delta = get_network_delta_layer(net, i-1);
+            layer prev = net.layers[i-1];
+            state.input = prev.output;
+            state.delta = prev.delta;
         }
-        if(net.types[i] == CONVOLUTIONAL){
-            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-            learn_convolutional_layer(layer, prev_input);
-            if(i != 0) backward_convolutional_layer(layer, prev_input, prev_delta);
-        }
-        else if(net.types[i] == MAXPOOL){
-            //maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-        }
-        else if(net.types[i] == CONNECTED){
-            connected_layer layer = *(connected_layer *)net.layers[i];
-            learn_connected_layer(layer, prev_input);
-            if(i != 0) backward_connected_layer(layer, prev_input, prev_delta);
-        }
+        layer l = net.layers[i];
+        if (l.stopbackward) break;
+        l.backward(l, state);
     }
 }
 
-void train_network_batch(network net, batch b)
+float train_network_datum(network net, float *x, float *y)
+{
+#ifdef GPU
+    if(gpu_index >= 0) return train_network_datum_gpu(net, x, y);
+#endif
+    network_state state;
+    *net.seen += net.batch;
+    state.index = 0;
+    state.net = net;
+    state.input = x;
+    state.delta = 0;
+    state.truth = y;
+    state.train = 1;
+    forward_network(net, state);
+    backward_network(net, state);
+    float error = get_network_cost(net);
+    if(((*net.seen)/net.batch)%net.subdivisions == 0) update_network(net);
+    return error;
+}
+
+float train_network_sgd(network net, data d, int n)
+{
+    int batch = net.batch;
+    float *X = calloc(batch*d.X.cols, sizeof(float));
+    float *y = calloc(batch*d.y.cols, sizeof(float));
+
+    int i;
+    float sum = 0;
+    for(i = 0; i < n; ++i){
+        get_random_batch(d, batch, X, y);
+        float err = train_network_datum(net, X, y);
+        sum += err;
+    }
+    free(X);
+    free(y);
+    return (float)sum/(n*batch);
+}
+
+float train_network(network net, data d)
+{
+    assert(d.X.rows % net.batch == 0);
+    int batch = net.batch;
+    int n = d.X.rows / batch;
+    float *X = calloc(batch*d.X.cols, sizeof(float));
+    float *y = calloc(batch*d.y.cols, sizeof(float));
+
+    int i;
+    float sum = 0;
+    for(i = 0; i < n; ++i){
+        get_next_batch(d, batch, i*batch, X, y);
+        float err = train_network_datum(net, X, y);
+        sum += err;
+    }
+    free(X);
+    free(y);
+    return (float)sum/(n*batch);
+}
+
+
+float train_network_batch(network net, data d, int n)
 {
     int i,j;
-    int k = get_network_output_size(net);
-    int correct = 0;
-    for(i = 0; i < b.n; ++i){
-        forward_network(net, b.images[i].data);
-        image o = get_network_image(net);
-        double *output = get_network_output(net);
-        double *delta = get_network_delta(net);
-        for(j = 0; j < k; ++j){
-            //printf("%f %f\n", b.truth[i][j], output[j]);
-            delta[j] = b.truth[i][j]-output[j];
-            if(fabs(delta[j]) < .5) ++correct;
-            //printf("%f\n",  output[j]);
+    network_state state;
+    state.index = 0;
+    state.net = net;
+    state.train = 1;
+    state.delta = 0;
+    float sum = 0;
+    int batch = 2;
+    for(i = 0; i < n; ++i){
+        for(j = 0; j < batch; ++j){
+            int index = rand()%d.X.rows;
+            state.input = d.X.vals[index];
+            state.truth = d.y.vals[index];
+            forward_network(net, state);
+            backward_network(net, state);
+            sum += get_network_cost(net);
         }
-        learn_network(net, b.images[i].data);
-        update_network(net, .00001);
+        update_network(net);
     }
-    printf("Accuracy: %f\n", (double)correct/b.n);
+    return (float)sum/(n*batch);
 }
 
-int get_network_output_size_layer(network net, int i)
+void set_batch_network(network *net, int b)
 {
-    if(net.types[i] == CONVOLUTIONAL){
-        convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-        image output = get_convolutional_image(layer);
-        return output.h*output.w*output.c;
+    net->batch = b;
+    int i;
+    for(i = 0; i < net->n; ++i){
+        net->layers[i].batch = b;
+#ifdef CUDNN
+        if(net->layers[i].type == CONVOLUTIONAL){
+            cudnn_convolutional_setup(net->layers + i, cudnn_fastest);
+            /*
+            layer *l = net->layers + i;
+            cudnn_convolutional_setup(l, cudnn_fastest);
+            // check for excessive memory consumption
+            size_t free_byte;
+            size_t total_byte;
+            check_error(cudaMemGetInfo(&free_byte, &total_byte));
+            if (l->workspace_size > free_byte || l->workspace_size >= total_byte / 2) {
+                printf(" used slow CUDNN algo without Workspace! \n");
+                cudnn_convolutional_setup(l, cudnn_smallest);
+                l->workspace_size = get_workspace_size(*l);
+            }
+            */
+        }
+#endif
     }
-    else if(net.types[i] == MAXPOOL){
-        maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-        image output = get_maxpool_image(layer);
-        return output.h*output.w*output.c;
+}
+
+int resize_network(network *net, int w, int h)
+{
+#ifdef GPU
+    cuda_set_device(net->gpu_index);
+    if(gpu_index >= 0){
+        cuda_free(net->workspace);
+        if (net->input_gpu) {
+            cuda_free(*net->input_gpu);
+            *net->input_gpu = 0;
+            cuda_free(*net->truth_gpu);
+            *net->truth_gpu = 0;
+        }
     }
-    else if(net.types[i] == CONNECTED){
-        connected_layer layer = *(connected_layer *)net.layers[i];
-        return layer.outputs;
+#endif
+    int i;
+    //if(w == net->w && h == net->h) return 0;
+    net->w = w;
+    net->h = h;
+    int inputs = 0;
+    size_t workspace_size = 0;
+    //fprintf(stderr, "Resizing to %d x %d...\n", w, h);
+    //fflush(stderr);
+    for (i = 0; i < net->n; ++i){
+        layer l = net->layers[i];
+        //printf(" %d: layer = %d,", i, l.type);
+        if(l.type == CONVOLUTIONAL){
+            resize_convolutional_layer(&l, w, h);
+        }else if(l.type == CROP){
+            resize_crop_layer(&l, w, h);
+        }else if(l.type == MAXPOOL){
+            resize_maxpool_layer(&l, w, h);
+        }else if(l.type == REGION){
+            resize_region_layer(&l, w, h);
+        }else if (l.type == YOLO) {
+            resize_yolo_layer(&l, w, h);
+        }else if(l.type == ROUTE){
+            resize_route_layer(&l, net);
+        }else if (l.type == SHORTCUT) {
+            resize_shortcut_layer(&l, w, h);
+        }else if (l.type == UPSAMPLE) {
+            resize_upsample_layer(&l, w, h);
+        }else if(l.type == REORG){
+            resize_reorg_layer(&l, w, h);
+        }else if(l.type == AVGPOOL){
+            resize_avgpool_layer(&l, w, h);
+        }else if(l.type == NORMALIZATION){
+            resize_normalization_layer(&l, w, h);
+        }else if(l.type == COST){
+            resize_cost_layer(&l, inputs);
+        }else{
+            fprintf(stderr, "Resizing type %d \n", (int)l.type);
+            error("Cannot resize this type of layer");
+        }
+        if(l.workspace_size > workspace_size) workspace_size = l.workspace_size;
+        inputs = l.outputs;
+        net->layers[i] = l;
+        w = l.out_w;
+        h = l.out_h;
+        if(l.type == AVGPOOL) break;
     }
+#ifdef GPU
+    if(gpu_index >= 0){
+        printf(" try to allocate workspace = %zu * sizeof(float), ", workspace_size / sizeof(float) + 1);
+        net->workspace = cuda_make_array(0, workspace_size/sizeof(float) + 1);
+        printf(" CUDA allocate done! \n");
+    }else {
+        free(net->workspace);
+        net->workspace = calloc(1, workspace_size);
+    }
+#else
+    free(net->workspace);
+    net->workspace = calloc(1, workspace_size);
+#endif
+    //fprintf(stderr, " Done!\n");
     return 0;
 }
 
 int get_network_output_size(network net)
 {
-    int i = net.n-1;
-    return get_network_output_size_layer(net, i);
+    int i;
+    for(i = net.n-1; i > 0; --i) if(net.layers[i].type != COST) break;
+    return net.layers[i].outputs;
+}
+
+int get_network_input_size(network net)
+{
+    return net.layers[0].inputs;
+}
+
+detection_layer get_network_detection_layer(network net)
+{
+    int i;
+    for(i = 0; i < net.n; ++i){
+        if(net.layers[i].type == DETECTION){
+            return net.layers[i];
+        }
+    }
+    fprintf(stderr, "Detection layer not found!!\n");
+    detection_layer l = {0};
+    return l;
 }
 
 image get_network_image_layer(network net, int i)
 {
-    if(net.types[i] == CONVOLUTIONAL){
-        convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-        return get_convolutional_image(layer);
+    layer l = net.layers[i];
+    if (l.out_w && l.out_h && l.out_c){
+        return float_to_image(l.out_w, l.out_h, l.out_c, l.output);
     }
-    else if(net.types[i] == MAXPOOL){
-        maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-        return get_maxpool_image(layer);
-    }
-    return make_image(0,0,0);
+    image def = {0};
+    return def;
+}
+
+layer* get_network_layer(network* net, int i)
+{
+    return net->layers + i;
 }
 
 image get_network_image(network net)
@@ -191,17 +505,368 @@
         image m = get_network_image_layer(net, i);
         if(m.h != 0) return m;
     }
-    return make_image(1,1,1);
+    image def = {0};
+    return def;
 }
 
 void visualize_network(network net)
 {
+    image *prev = 0;
     int i;
-    for(i = 0; i < 1; ++i){
-        if(net.types[i] == CONVOLUTIONAL){
-            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-            visualize_convolutional_layer(layer);
+    char buff[256];
+    for(i = 0; i < net.n; ++i){
+        sprintf(buff, "Layer %d", i);
+        layer l = net.layers[i];
+        if(l.type == CONVOLUTIONAL){
+            prev = visualize_convolutional_layer(l, buff, prev);
         }
-    } 
+    }
 }
 
+void top_predictions(network net, int k, int *index)
+{
+    int size = get_network_output_size(net);
+    float *out = get_network_output(net);
+    top_k(out, size, k, index);
+}
+
+
+float *network_predict(network net, float *input)
+{
+#ifdef GPU
+    if(gpu_index >= 0)  return network_predict_gpu(net, input);
+#endif
+
+    network_state state;
+    state.net = net;
+    state.index = 0;
+    state.input = input;
+    state.truth = 0;
+    state.train = 0;
+    state.delta = 0;
+    forward_network(net, state);
+    float *out = get_network_output(net);
+    return out;
+}
+
+int num_detections(network *net, float thresh)
+{
+    int i;
+    int s = 0;
+    for (i = 0; i < net->n; ++i) {
+        layer l = net->layers[i];
+        if (l.type == YOLO) {
+            s += yolo_num_detections(l, thresh);
+        }
+        if (l.type == DETECTION || l.type == REGION) {
+            s += l.w*l.h*l.n;
+        }
+    }
+    return s;
+}
+
+detection *make_network_boxes(network *net, float thresh, int *num)
+{
+    layer l = net->layers[net->n - 1];
+    int i;
+    int nboxes = num_detections(net, thresh);
+    if (num) *num = nboxes;
+    detection *dets = calloc(nboxes, sizeof(detection));
+    for (i = 0; i < nboxes; ++i) {
+        dets[i].prob = calloc(l.classes, sizeof(float));
+        if (l.coords > 4) {
+            dets[i].mask = calloc(l.coords - 4, sizeof(float));
+        }
+    }
+    return dets;
+}
+
+
+void custom_get_region_detections(layer l, int w, int h, int net_w, int net_h, float thresh, int *map, float hier, int relative, detection *dets, int letter)
+{
+    box *boxes = calloc(l.w*l.h*l.n, sizeof(box));
+    float **probs = calloc(l.w*l.h*l.n, sizeof(float *));
+    int i, j;
+    for (j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(l.classes, sizeof(float));
+    get_region_boxes(l, 1, 1, thresh, probs, boxes, 0, map);
+    for (j = 0; j < l.w*l.h*l.n; ++j) {
+        dets[j].classes = l.classes;
+        dets[j].bbox = boxes[j];
+        dets[j].objectness = 1;
+        for (i = 0; i < l.classes; ++i) {
+            dets[j].prob[i] = probs[j][i];
+        }
+    }
+
+    free(boxes);
+    free_ptrs((void **)probs, l.w*l.h*l.n);
+
+    //correct_region_boxes(dets, l.w*l.h*l.n, w, h, net_w, net_h, relative);
+    correct_yolo_boxes(dets, l.w*l.h*l.n, w, h, net_w, net_h, relative, letter);
+}
+
+void fill_network_boxes(network *net, int w, int h, float thresh, float hier, int *map, int relative, detection *dets, int letter)
+{
+    int prev_classes = -1;
+    int j;
+    for (j = 0; j < net->n; ++j) {
+        layer l = net->layers[j];
+        if (l.type == YOLO) {
+            int count = get_yolo_detections(l, w, h, net->w, net->h, thresh, map, relative, dets, letter);
+            dets += count;
+            if (prev_classes < 0) prev_classes = l.classes;
+            else if (prev_classes != l.classes) {
+                printf(" Error: Different [yolo] layers have different number of classes = %d and %d - check your cfg-file! \n",
+                    prev_classes, l.classes);
+            }
+        }
+        if (l.type == REGION) {
+            custom_get_region_detections(l, w, h, net->w, net->h, thresh, map, hier, relative, dets, letter);
+            //get_region_detections(l, w, h, net->w, net->h, thresh, map, hier, relative, dets);
+            dets += l.w*l.h*l.n;
+        }
+        if (l.type == DETECTION) {
+            get_detection_detections(l, w, h, thresh, dets);
+            dets += l.w*l.h*l.n;
+        }
+    }
+}
+
+detection *get_network_boxes(network *net, int w, int h, float thresh, float hier, int *map, int relative, int *num, int letter)
+{
+    detection *dets = make_network_boxes(net, thresh, num);
+    fill_network_boxes(net, w, h, thresh, hier, map, relative, dets, letter);
+    return dets;
+}
+
+void free_detections(detection *dets, int n)
+{
+    int i;
+    for (i = 0; i < n; ++i) {
+        free(dets[i].prob);
+        if (dets[i].mask) free(dets[i].mask);
+    }
+    free(dets);
+}
+
+float *network_predict_image(network *net, image im)
+{
+    //image imr = letterbox_image(im, net->w, net->h);
+    image imr = resize_image(im, net->w, net->h);
+    set_batch_network(net, 1);
+    float *p = network_predict(*net, imr.data);
+    free_image(imr);
+    return p;
+}
+
+int network_width(network *net) { return net->w; }
+int network_height(network *net) { return net->h; }
+
+matrix network_predict_data_multi(network net, data test, int n)
+{
+    int i,j,b,m;
+    int k = get_network_output_size(net);
+    matrix pred = make_matrix(test.X.rows, k);
+    float *X = calloc(net.batch*test.X.rows, sizeof(float));
+    for(i = 0; i < test.X.rows; i += net.batch){
+        for(b = 0; b < net.batch; ++b){
+            if(i+b == test.X.rows) break;
+            memcpy(X+b*test.X.cols, test.X.vals[i+b], test.X.cols*sizeof(float));
+        }
+        for(m = 0; m < n; ++m){
+            float *out = network_predict(net, X);
+            for(b = 0; b < net.batch; ++b){
+                if(i+b == test.X.rows) break;
+                for(j = 0; j < k; ++j){
+                    pred.vals[i+b][j] += out[j+b*k]/n;
+                }
+            }
+        }
+    }
+    free(X);
+    return pred;
+}
+
+matrix network_predict_data(network net, data test)
+{
+    int i,j,b;
+    int k = get_network_output_size(net);
+    matrix pred = make_matrix(test.X.rows, k);
+    float *X = calloc(net.batch*test.X.cols, sizeof(float));
+    for(i = 0; i < test.X.rows; i += net.batch){
+        for(b = 0; b < net.batch; ++b){
+            if(i+b == test.X.rows) break;
+            memcpy(X+b*test.X.cols, test.X.vals[i+b], test.X.cols*sizeof(float));
+        }
+        float *out = network_predict(net, X);
+        for(b = 0; b < net.batch; ++b){
+            if(i+b == test.X.rows) break;
+            for(j = 0; j < k; ++j){
+                pred.vals[i+b][j] = out[j+b*k];
+            }
+        }
+    }
+    free(X);
+    return pred;
+}
+
+void print_network(network net)
+{
+    int i,j;
+    for(i = 0; i < net.n; ++i){
+        layer l = net.layers[i];
+        float *output = l.output;
+        int n = l.outputs;
+        float mean = mean_array(output, n);
+        float vari = variance_array(output, n);
+        fprintf(stderr, "Layer %d - Mean: %f, Variance: %f\n",i,mean, vari);
+        if(n > 100) n = 100;
+        for(j = 0; j < n; ++j) fprintf(stderr, "%f, ", output[j]);
+        if(n == 100)fprintf(stderr,".....\n");
+        fprintf(stderr, "\n");
+    }
+}
+
+void compare_networks(network n1, network n2, data test)
+{
+    matrix g1 = network_predict_data(n1, test);
+    matrix g2 = network_predict_data(n2, test);
+    int i;
+    int a,b,c,d;
+    a = b = c = d = 0;
+    for(i = 0; i < g1.rows; ++i){
+        int truth = max_index(test.y.vals[i], test.y.cols);
+        int p1 = max_index(g1.vals[i], g1.cols);
+        int p2 = max_index(g2.vals[i], g2.cols);
+        if(p1 == truth){
+            if(p2 == truth) ++d;
+            else ++c;
+        }else{
+            if(p2 == truth) ++b;
+            else ++a;
+        }
+    }
+    printf("%5d %5d\n%5d %5d\n", a, b, c, d);
+    float num = pow((abs(b - c) - 1.), 2.);
+    float den = b + c;
+    printf("%f\n", num/den);
+}
+
+float network_accuracy(network net, data d)
+{
+    matrix guess = network_predict_data(net, d);
+    float acc = matrix_topk_accuracy(d.y, guess,1);
+    free_matrix(guess);
+    return acc;
+}
+
+float *network_accuracies(network net, data d, int n)
+{
+    static float acc[2];
+    matrix guess = network_predict_data(net, d);
+    acc[0] = matrix_topk_accuracy(d.y, guess, 1);
+    acc[1] = matrix_topk_accuracy(d.y, guess, n);
+    free_matrix(guess);
+    return acc;
+}
+
+float network_accuracy_multi(network net, data d, int n)
+{
+    matrix guess = network_predict_data_multi(net, d, n);
+    float acc = matrix_topk_accuracy(d.y, guess,1);
+    free_matrix(guess);
+    return acc;
+}
+
+void free_network(network net)
+{
+    int i;
+    for (i = 0; i < net.n; ++i) {
+        free_layer(net.layers[i]);
+    }
+    free(net.layers);
+
+    free(net.scales);
+    free(net.steps);
+    free(net.seen);
+
+#ifdef GPU
+    if (gpu_index >= 0) cuda_free(net.workspace);
+    else free(net.workspace);
+    if (*net.input_gpu) cuda_free(*net.input_gpu);
+    if (*net.truth_gpu) cuda_free(*net.truth_gpu);
+    if (net.input_gpu) free(net.input_gpu);
+    if (net.truth_gpu) free(net.truth_gpu);
+
+    if (*net.input16_gpu) cuda_free(*net.input16_gpu);
+    if (*net.output16_gpu) cuda_free(*net.output16_gpu);
+    if (net.input16_gpu) free(net.input16_gpu);
+    if (net.output16_gpu) free(net.output16_gpu);
+    if (net.max_input16_size) free(net.max_input16_size);
+    if (net.max_output16_size) free(net.max_output16_size);
+#else
+    free(net.workspace);
+#endif
+}
+
+
+void fuse_conv_batchnorm(network net)
+{
+    int j;
+    for (j = 0; j < net.n; ++j) {
+        layer *l = &net.layers[j];
+
+        if (l->type == CONVOLUTIONAL) {
+            //printf(" Merges Convolutional-%d and batch_norm \n", j);
+
+            if (l->batch_normalize) {
+                int f;
+                for (f = 0; f < l->n; ++f)
+                {
+                    l->biases[f] = l->biases[f] - (double)l->scales[f] * l->rolling_mean[f] / (sqrt((double)l->rolling_variance[f]) + .000001f);
+
+                    const size_t filter_size = l->size*l->size*l->c;
+                    int i;
+                    for (i = 0; i < filter_size; ++i) {
+                        int w_index = f*filter_size + i;
+
+                        l->weights[w_index] = (double)l->weights[w_index] * l->scales[f] / (sqrt((double)l->rolling_variance[f]) + .000001f);
+                    }
+                }
+
+                l->batch_normalize = 0;
+#ifdef GPU
+                if (gpu_index >= 0) {
+                    push_convolutional_layer(*l);
+                }
+#endif
+            }
+        }
+        else {
+            //printf(" Fusion skip layer type: %d \n", l->type);
+        }
+    }
+}
+
+
+
+void calculate_binary_weights(network net)
+{
+    int j;
+    for (j = 0; j < net.n; ++j) {
+        layer *l = &net.layers[j];
+
+        if (l->type == CONVOLUTIONAL) {
+            //printf(" Merges Convolutional-%d and batch_norm \n", j);
+
+            if (l->xnor) {
+                //printf("\n %d \n", j);
+                l->lda_align = 256; // 256bit for AVX2
+
+                binary_align_weights(l);
+            }
+        }
+    }
+    //printf("\n calculate_binary_weights Done! \n");
+
+}
\ No newline at end of file

--
Gitblit v1.10.0