From 5a47c46b39475fc3581b9819f488b977ea1beca3 Mon Sep 17 00:00:00 2001
From: Edmond Yoo <hj3yoo@uwaterloo.ca>
Date: Sun, 16 Sep 2018 03:11:04 +0000
Subject: [PATCH] Moving files from MTGCardDetector

---
 src/network.h |  156 +++++++++++++++++++++++++++++++++++++++++++++++-----
 1 files changed, 141 insertions(+), 15 deletions(-)

diff --git a/src/network.h b/src/network.h
index 10fa6c5..3b07dbb 100644
--- a/src/network.h
+++ b/src/network.h
@@ -2,34 +2,160 @@
 #ifndef NETWORK_H
 #define NETWORK_H
 
+#include <stdint.h>
+#include "layer.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
 #include "image.h"
 #include "data.h"
+#include "tree.h"
 
 typedef enum {
-    CONVOLUTIONAL,
-    CONNECTED,
-    MAXPOOL
-} LAYER_TYPE;
+    CONSTANT, STEP, EXP, POLY, STEPS, SIG, RANDOM
+} learning_rate_policy;
 
-typedef struct {
+typedef struct network{
+    float *workspace;
     int n;
-    void **layers;
-    LAYER_TYPE *types;
+    int batch;
+	int *seen;
+    float epoch;
+    int subdivisions;
+    float momentum;
+    float decay;
+    layer *layers;
+    int outputs;
+    float *output;
+    learning_rate_policy policy;
+
+    float learning_rate;
+    float gamma;
+    float scale;
+    float power;
+    int time_steps;
+    int step;
+    int max_batches;
+    float *scales;
+    int   *steps;
+    int num_steps;
+    int burn_in;
+
+    int adam;
+    float B1;
+    float B2;
+    float eps;
+
+    int inputs;
+    int h, w, c;
+    int max_crop;
+    int min_crop;
+    int flip; // horizontal flip 50% probability augmentaiont for classifier training (default = 1)
+    float angle;
+    float aspect;
+    float exposure;
+    float saturation;
+    float hue;
+	int small_object;
+
+    int gpu_index;
+    tree *hierarchy;
+
+    #ifdef GPU
+    float **input_gpu;
+    float **truth_gpu;
+	float **input16_gpu;
+	float **output16_gpu;
+	size_t *max_input16_size;
+	size_t *max_output16_size;
+	int wait_stream;
+    #endif
 } network;
 
+typedef struct network_state {
+    float *truth;
+    float *input;
+    float *delta;
+    float *workspace;
+    int train;
+    int index;
+    network net;
+} network_state;
+
+#ifdef GPU
+float train_networks(network *nets, int n, data d, int interval);
+void sync_nets(network *nets, int n, int interval);
+float train_network_datum_gpu(network net, float *x, float *y);
+float *network_predict_gpu(network net, float *input);
+float * get_network_output_gpu_layer(network net, int i);
+float * get_network_delta_gpu_layer(network net, int i);
+float *get_network_output_gpu(network net);
+void forward_network_gpu(network net, network_state state);
+void backward_network_gpu(network net, network_state state);
+void update_network_gpu(network net);
+#endif
+
+float get_current_rate(network net);
+int get_current_batch(network net);
+void free_network(network net);
+void compare_networks(network n1, network n2, data d);
+char *get_layer_string(LAYER_TYPE a);
+
 network make_network(int n);
-void forward_network(network net, double *input);
-void learn_network(network net, double *input);
-void update_network(network net, double step);
-void train_network_batch(network net, batch b);
-double *get_network_output(network net);
-double *get_network_output_layer(network net, int i);
-double *get_network_delta_layer(network net, int i);
-double *get_network_delta(network net);
+void forward_network(network net, network_state state);
+void backward_network(network net, network_state state);
+void update_network(network net);
+
+float train_network(network net, data d);
+float train_network_batch(network net, data d, int n);
+float train_network_sgd(network net, data d, int n);
+float train_network_datum(network net, float *x, float *y);
+
+matrix network_predict_data(network net, data test);
+YOLODLL_API float *network_predict(network net, float *input);
+float network_accuracy(network net, data d);
+float *network_accuracies(network net, data d, int n);
+float network_accuracy_multi(network net, data d, int n);
+void top_predictions(network net, int n, int *index);
+float *get_network_output(network net);
+float *get_network_output_layer(network net, int i);
+float *get_network_delta_layer(network net, int i);
+float *get_network_delta(network net);
 int get_network_output_size_layer(network net, int i);
 int get_network_output_size(network net);
 image get_network_image(network net);
 image get_network_image_layer(network net, int i);
+int get_predicted_class_network(network net);
+void print_network(network net);
+void visualize_network(network net);
+int resize_network(network *net, int w, int h);
+void set_batch_network(network *net, int b);
+int get_network_input_size(network net);
+float get_network_cost(network net);
+YOLODLL_API layer* get_network_layer(network* net, int i);
+YOLODLL_API detection *get_network_boxes(network *net, int w, int h, float thresh, float hier, int *map, int relative, int *num, int letter);
+YOLODLL_API detection *make_network_boxes(network *net, float thresh, int *num);
+YOLODLL_API void free_detections(detection *dets, int n);
+YOLODLL_API void reset_rnn(network *net);
+YOLODLL_API network *load_network_custom(char *cfg, char *weights, int clear, int batch);
+YOLODLL_API network *load_network(char *cfg, char *weights, int clear);
+YOLODLL_API float *network_predict_image(network *net, image im);
+YOLODLL_API void train_detector(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear, int dont_show);
+YOLODLL_API int network_width(network *net);
+YOLODLL_API int network_height(network *net);
+
+YOLODLL_API void optimize_picture(network *net, image orig, int max_layer, float scale, float rate, float thresh, int norm);
+
+int get_network_nuisance(network net);
+int get_network_background(network net);
+YOLODLL_API void fuse_conv_batchnorm(network net);
+YOLODLL_API void calculate_binary_weights(network net);
+
+#ifdef __cplusplus
+}
+#endif
 
 #endif
 

--
Gitblit v1.10.0