From 5ba91c38708b5af6e227c0742426b805d39bfafe Mon Sep 17 00:00:00 2001
From: Edmond Yoo <hj3yoo@uwaterloo.ca>
Date: Sat, 15 Sep 2018 00:29:08 +0000
Subject: [PATCH] temp

---
 src/batchnorm_layer.c |  152 +++++++++++++++++++++++++-------------------------
 1 files changed, 76 insertions(+), 76 deletions(-)

diff --git a/src/batchnorm_layer.c b/src/batchnorm_layer.c
index 4443291..3fa129d 100644
--- a/src/batchnorm_layer.c
+++ b/src/batchnorm_layer.c
@@ -53,10 +53,10 @@
     layer.x_gpu = cuda_make_array(layer.output, layer.batch*layer.outputs);
     layer.x_norm_gpu = cuda_make_array(layer.output, layer.batch*layer.outputs);
 #ifdef CUDNN
-	cudnnCreateTensorDescriptor(&layer.normTensorDesc);
-	cudnnCreateTensorDescriptor(&layer.dstTensorDesc);
-	cudnnSetTensor4dDescriptor(layer.dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, layer.batch, layer.out_c, layer.out_h, layer.out_w);
-	cudnnSetTensor4dDescriptor(layer.normTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, layer.out_c, 1, 1);
+    cudnnCreateTensorDescriptor(&layer.normTensorDesc);
+    cudnnCreateTensorDescriptor(&layer.normDstTensorDesc);
+    cudnnSetTensor4dDescriptor(layer.normDstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, layer.batch, layer.out_c, layer.out_h, layer.out_w);
+    cudnnSetTensor4dDescriptor(layer.normTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, layer.out_c, 1, 1);
 #endif
 #endif
     return layer;
@@ -179,93 +179,93 @@
 
 void forward_batchnorm_layer_gpu(layer l, network_state state)
 {
-	if (l.type == BATCHNORM) copy_ongpu(l.outputs*l.batch, state.input, 1, l.output_gpu, 1);
-	copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_gpu, 1);
-	if (state.train) {
+    if (l.type == BATCHNORM) copy_ongpu(l.outputs*l.batch, state.input, 1, l.output_gpu, 1);
+    copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_gpu, 1);
+    if (state.train) {
 #ifdef CUDNN
-		float one = 1;
-		float zero = 0;
-		cudnnBatchNormalizationForwardTraining(cudnn_handle(),
-			CUDNN_BATCHNORM_SPATIAL,
-			&one,
-			&zero,
-			l.dstTensorDesc,
-			l.x_gpu,
-			l.dstTensorDesc,
-			l.output_gpu,
-			l.normTensorDesc,
-			l.scales_gpu,
-			l.biases_gpu,
-			.01,
-			l.rolling_mean_gpu,
-			l.rolling_variance_gpu,
-			.00001,
-			l.mean_gpu,
-			l.variance_gpu);
+        float one = 1;
+        float zero = 0;
+        cudnnBatchNormalizationForwardTraining(cudnn_handle(),
+            CUDNN_BATCHNORM_SPATIAL,
+            &one,
+            &zero,
+            l.normDstTensorDesc,
+            l.x_gpu,                // input
+            l.normDstTensorDesc,
+            l.output_gpu,            // output
+            l.normTensorDesc,
+            l.scales_gpu,
+            l.biases_gpu,
+            .01,
+            l.rolling_mean_gpu,        // output (should be FP32)
+            l.rolling_variance_gpu,    // output (should be FP32)
+            .00001,
+            l.mean_gpu,            // output (should be FP32)
+            l.variance_gpu);    // output (should be FP32)
 #else
-		fast_mean_gpu(l.output_gpu, l.batch, l.out_c, l.out_h*l.out_w, l.mean_gpu);
-		fast_variance_gpu(l.output_gpu, l.mean_gpu, l.batch, l.out_c, l.out_h*l.out_w, l.variance_gpu);
+        fast_mean_gpu(l.output_gpu, l.batch, l.out_c, l.out_h*l.out_w, l.mean_gpu);
+        fast_variance_gpu(l.output_gpu, l.mean_gpu, l.batch, l.out_c, l.out_h*l.out_w, l.variance_gpu);
 
-		scal_ongpu(l.out_c, .99, l.rolling_mean_gpu, 1);
-		axpy_ongpu(l.out_c, .01, l.mean_gpu, 1, l.rolling_mean_gpu, 1);
-		scal_ongpu(l.out_c, .99, l.rolling_variance_gpu, 1);
-		axpy_ongpu(l.out_c, .01, l.variance_gpu, 1, l.rolling_variance_gpu, 1);
+        scal_ongpu(l.out_c, .99, l.rolling_mean_gpu, 1);
+        axpy_ongpu(l.out_c, .01, l.mean_gpu, 1, l.rolling_mean_gpu, 1);
+        scal_ongpu(l.out_c, .99, l.rolling_variance_gpu, 1);
+        axpy_ongpu(l.out_c, .01, l.variance_gpu, 1, l.rolling_variance_gpu, 1);
 
-		copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_gpu, 1);
-		normalize_gpu(l.output_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.out_c, l.out_h*l.out_w);
-		copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_norm_gpu, 1);
+        copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_gpu, 1);
+        normalize_gpu(l.output_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.out_c, l.out_h*l.out_w);
+        copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_norm_gpu, 1);
 
-		scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
-		add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.out_c, l.out_w*l.out_h);
+        scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
+        add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.out_c, l.out_w*l.out_h);
 #endif
-	}
-	else {
-		normalize_gpu(l.output_gpu, l.rolling_mean_gpu, l.rolling_variance_gpu, l.batch, l.out_c, l.out_h*l.out_w);
-		scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
-		add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.out_c, l.out_w*l.out_h);
-	}
+    }
+    else {
+        normalize_gpu(l.output_gpu, l.rolling_mean_gpu, l.rolling_variance_gpu, l.batch, l.out_c, l.out_h*l.out_w);
+        scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
+        add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.out_c, l.out_w*l.out_h);
+    }
 
 }
 
 void backward_batchnorm_layer_gpu(layer l, network_state state)
 {
-	if (!state.train) {
-		l.mean_gpu = l.rolling_mean_gpu;
-		l.variance_gpu = l.rolling_variance_gpu;
-	}
+    if (!state.train) {
+        l.mean_gpu = l.rolling_mean_gpu;
+        l.variance_gpu = l.rolling_variance_gpu;
+    }
 #ifdef CUDNN
-	float one = 1;
-	float zero = 0;
-	cudnnBatchNormalizationBackward(cudnn_handle(),
-		CUDNN_BATCHNORM_SPATIAL,
-		&one,
-		&zero,
-		&one,
-		&one,
-		l.dstTensorDesc,
-		l.x_gpu,
-		l.dstTensorDesc,
-		l.delta_gpu,
-		l.dstTensorDesc,
-		l.x_norm_gpu,
-		l.normTensorDesc,
-		l.scales_gpu,
-		l.scale_updates_gpu,
-		l.bias_updates_gpu,
-		.00001,
-		l.mean_gpu,
-		l.variance_gpu);
-	copy_ongpu(l.outputs*l.batch, l.x_norm_gpu, 1, l.delta_gpu, 1);
+    float one = 1;
+    float zero = 0;
+    cudnnBatchNormalizationBackward(cudnn_handle(),
+        CUDNN_BATCHNORM_SPATIAL,
+        &one,
+        &zero,
+        &one,
+        &one,
+        l.normDstTensorDesc,
+        l.x_gpu,                // input
+        l.normDstTensorDesc,
+        l.delta_gpu,            // input
+        l.normDstTensorDesc,
+        l.x_norm_gpu,            // output
+        l.normTensorDesc,
+        l.scales_gpu,            // output (should be FP32)
+        l.scale_updates_gpu,    // output (should be FP32)
+        l.bias_updates_gpu,        // output (should be FP32)
+        .00001,
+        l.mean_gpu,                // input (should be FP32)
+        l.variance_gpu);        // input (should be FP32)
+    copy_ongpu(l.outputs*l.batch, l.x_norm_gpu, 1, l.delta_gpu, 1);
 #else
-	backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.out_c, l.out_w*l.out_h);
-	backward_scale_gpu(l.x_norm_gpu, l.delta_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.scale_updates_gpu);
+    backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.out_c, l.out_w*l.out_h);
+    backward_scale_gpu(l.x_norm_gpu, l.delta_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.scale_updates_gpu);
 
-	scale_bias_gpu(l.delta_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
+    scale_bias_gpu(l.delta_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
 
-	fast_mean_delta_gpu(l.delta_gpu, l.variance_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.mean_delta_gpu);
-	fast_variance_delta_gpu(l.x_gpu, l.delta_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.variance_delta_gpu);
-	normalize_delta_gpu(l.x_gpu, l.mean_gpu, l.variance_gpu, l.mean_delta_gpu, l.variance_delta_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.delta_gpu);
+    fast_mean_delta_gpu(l.delta_gpu, l.variance_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.mean_delta_gpu);
+    fast_variance_delta_gpu(l.x_gpu, l.delta_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.variance_delta_gpu);
+    normalize_delta_gpu(l.x_gpu, l.mean_gpu, l.variance_gpu, l.mean_delta_gpu, l.variance_delta_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.delta_gpu);
 #endif
-	if (l.type == BATCHNORM) copy_ongpu(l.outputs*l.batch, l.delta_gpu, 1, state.delta, 1);
+    if (l.type == BATCHNORM) copy_ongpu(l.outputs*l.batch, l.delta_gpu, 1, state.delta, 1);
 }
 #endif
\ No newline at end of file

--
Gitblit v1.10.0