From 5bc62b14e06a3fcfda4e3a19fba77589920eddee Mon Sep 17 00:00:00 2001
From: AlexeyAB <alexeyab84@gmail.com>
Date: Mon, 03 Jul 2017 11:12:52 +0000
Subject: [PATCH] Memory leak fixed

---
 README.md |   36 +++++++++++++++++++++---------------
 1 files changed, 21 insertions(+), 15 deletions(-)

diff --git a/README.md b/README.md
index f833da9..43b21b3 100644
--- a/README.md
+++ b/README.md
@@ -26,7 +26,7 @@
 More details: http://pjreddie.com/darknet/yolo/
 
 ##### Requires: 
-* **MS Visual Studio 2015 (v140)**: https://www.microsoft.com/download/details.aspx?id=48146
+* **MS Visual Studio 2015 (v140)**: https://go.microsoft.com/fwlink/?LinkId=532606&clcid=0x409  (or offline [ISO image](https://go.microsoft.com/fwlink/?LinkId=615448&clcid=0x409))
 * **CUDA 8.0 for Windows x64**: https://developer.nvidia.com/cuda-downloads
 * **OpenCV 2.4.9**: https://sourceforge.net/projects/opencvlibrary/files/opencv-win/2.4.9/opencv-2.4.9.exe/download
   - To compile without OpenCV - remove define OPENCV from: Visual Studio->Project->Properties->C/C++->Preprocessor
@@ -169,9 +169,9 @@
 
 5. Run command: `type 2007_train.txt 2007_val.txt 2012_*.txt > train.txt`
 
-6. Set `batch=64` and `subdivisions=8` in the file `yolo-voc.cfg`: [link](https://github.com/AlexeyAB/darknet/blob/master/build/darknet/x64/yolo-voc.cfg#L3)
+6. Set `batch=64` and `subdivisions=8` in the file `yolo-voc.2.0.cfg`: [link](https://github.com/AlexeyAB/darknet/blob/master/build/darknet/x64/yolo-voc.cfg#L3)
 
-7. Start training by using `train_voc.cmd` or by using the command line: `darknet.exe detector train data/voc.data yolo-voc.cfg darknet19_448.conv.23`
+7. Start training by using `train_voc.cmd` or by using the command line: `darknet.exe detector train data/voc.data yolo-voc.2.0.cfg darknet19_448.conv.23`
 
 If required change pathes in the file `build\darknet\x64\data\voc.data`
 
@@ -179,22 +179,22 @@
 
 ## How to train with multi-GPU:
 
-1. Train it first on 1 GPU for like 1000 iterations: `darknet.exe detector train data/voc.data yolo-voc.cfg darknet19_448.conv.23`
+1. Train it first on 1 GPU for like 1000 iterations: `darknet.exe detector train data/voc.data yolo-voc.2.0.cfg darknet19_448.conv.23`
 
-2. Then stop and by using partially-trained model `/backup/yolo-voc_1000.weights` run training with multigpu (up to 4 GPUs): `darknet.exe detector train data/voc.data yolo-voc.cfg yolo-voc_1000.weights -gpus 0,1,2,3`
+2. Then stop and by using partially-trained model `/backup/yolo-voc_1000.weights` run training with multigpu (up to 4 GPUs): `darknet.exe detector train data/voc.data yolo-voc.2.0.cfg yolo-voc_1000.weights -gpus 0,1,2,3`
 
 https://groups.google.com/d/msg/darknet/NbJqonJBTSY/Te5PfIpuCAAJ
 
 ## How to train (to detect your custom objects):
 
-1. Create file `yolo-obj.cfg` with the same content as in `yolo-voc.cfg` (or copy `yolo-voc.cfg` to `yolo-obj.cfg)` and:
+1. Create file `yolo-obj.cfg` with the same content as in `yolo-voc.2.0.cfg` (or copy `yolo-voc.2.0.cfg` to `yolo-obj.cfg)` and:
 
   * change line batch to [`batch=64`](https://github.com/AlexeyAB/darknet/blob/master/build/darknet/x64/yolo-voc.cfg#L3)
   * change line subdivisions to [`subdivisions=8`](https://github.com/AlexeyAB/darknet/blob/master/build/darknet/x64/yolo-voc.cfg#L4)
   * change line `classes=20` to your number of objects
-  * change line #224 from [`filters=125`](https://github.com/AlexeyAB/darknet/blob/master/cfg/yolo-voc.cfg#L224) to `filters=(classes + 5)*5` (generally this depends on the `num` and `coords`, i.e. equal to `(classes + coords + 1)*num`)
+  * change line #237 from [`filters=125`](https://github.com/AlexeyAB/darknet/blob/master/cfg/yolo-voc.cfg#L237) to `filters=(classes + 5)*5` (generally this depends on the `num` and `coords`, i.e. equal to `(classes + coords + 1)*num`)
 
-  For example, for 2 objects, your file `yolo-obj.cfg` should differ from `yolo-voc.cfg` in such lines:
+  For example, for 2 objects, your file `yolo-obj.cfg` should differ from `yolo-voc.2.0.cfg` in such lines:
 
   ```
   [convolutional]
@@ -210,9 +210,9 @@
 
   ```
   classes= 2
-  train  = train.txt
-  valid  = test.txt
-  names = obj.names
+  train  = data/train.txt
+  valid  = data/test.txt
+  names = data/obj.names
   backup = backup/
   ```
 
@@ -246,6 +246,8 @@
 
 8. Start training by using the command line: `darknet.exe detector train data/obj.data yolo-obj.cfg darknet19_448.conv.23`
 
+    (file `yolo-obj_xxx.weights` will be saved to the `build\darknet\x64\backup\` for each 100 iterations until 1000 iterations has been reached, and after for each 1000 iterations)
+
 9. After training is complete - get result `yolo-obj_final.weights` from path `build\darknet\x64\backup\`
 
  * After each 1000 iterations you can stop and later start training from this point. For example, after 2000 iterations you can stop training, and later just copy `yolo-obj_2000.weights` from `build\darknet\x64\backup\` to `build\darknet\x64\` and start training using: `darknet.exe detector train data/obj.data yolo-obj.cfg yolo-obj_2000.weights`
@@ -267,7 +269,7 @@
   * **9002** - iteration number (number of batch)
   * **0.060730 avg** - average loss (error) - **the lower, the better**
 
-  When you see that average loss **0.060730 avg** enough low at many iterations and no longer decreases then you should stop training.
+  When you see that average loss **0.xxxxxx avg** no longer decreases at many iterations then you should stop training.
 
 2. Once training is stopped, you should take some of last `.weights`-files from `darknet\build\darknet\x64\backup` and choose the best of them:
 
@@ -275,7 +277,9 @@
 
 ![Overfitting](https://hsto.org/files/5dc/7ae/7fa/5dc7ae7fad9d4e3eb3a484c58bfc1ff5.png) 
 
-  2.1. At first, you should put filenames of validation images to file `data\voc.2007.test` (format as in `train.txt`) or if you haven't validation images - simply copy `data\train.txt` to `data\voc.2007.test`.
+To get weights from Early Stopping Point:
+
+  2.1. At first, in your file `obj.data` you must specify the path to the validation dataset `valid = valid.txt` (format of `valid.txt` as in `train.txt`), and if you haven't validation images, just copy `data\train.txt` to `data\valid.txt`.
 
   2.2 If training is stopped after 9000 iterations, to validate some of previous weights use this commands:
 
@@ -288,9 +292,9 @@
 > 7586 7612 7689 RPs/Img: 68.23 **IOU: 77.86%** Recall:99.00%
 
 * **IOU** - the bigger, the better (says about accuracy) - **better to use**
-* **Recall** - the bigger, the better (says about accuracy)
+* **Recall** - the bigger, the better (says about accuracy) - actually Yolo calculates true positives, so it shouldn't be used
 
-For example, **bigger IUO** gives weights `yolo-obj_8000.weights` - then **use this weights for detection**.
+For example, **bigger IOU** gives weights `yolo-obj_8000.weights` - then **use this weights for detection**.
 
 
 ![precision_recall_iou](https://hsto.org/files/ca8/866/d76/ca8866d76fb840228940dbf442a7f06a.jpg)
@@ -306,6 +310,8 @@
 
 1. Before training:
   * set flag `random=1` in your `.cfg`-file - it will increase precision by training Yolo for different resolutions: [link](https://github.com/AlexeyAB/darknet/blob/47409529d0eb935fa7bafbe2b3484431117269f5/cfg/yolo-voc.cfg#L244)
+  
+  * desirable that your training dataset include images with objects at diffrent: scales, rotations, lightings, from different sides
 
 2. After training - for detection:
 

--
Gitblit v1.10.0