From 5c067dc44785a761a0243d8cd634e3ac17d548ad Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Mon, 12 Sep 2016 20:55:20 +0000
Subject: [PATCH] good chance I didn't break anything

---
 src/network_kernels.cu |  180 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 1 files changed, 178 insertions(+), 2 deletions(-)

diff --git a/src/network_kernels.cu b/src/network_kernels.cu
index 730634e..3e0c2b6 100644
--- a/src/network_kernels.cu
+++ b/src/network_kernels.cu
@@ -16,14 +16,18 @@
 #include "crop_layer.h"
 #include "connected_layer.h"
 #include "rnn_layer.h"
+#include "gru_layer.h"
 #include "crnn_layer.h"
 #include "detection_layer.h"
+#include "region_layer.h"
 #include "convolutional_layer.h"
 #include "activation_layer.h"
 #include "deconvolutional_layer.h"
 #include "maxpool_layer.h"
+#include "reorg_layer.h"
 #include "avgpool_layer.h"
 #include "normalization_layer.h"
+#include "batchnorm_layer.h"
 #include "cost_layer.h"
 #include "local_layer.h"
 #include "softmax_layer.h"
@@ -39,6 +43,7 @@
 
 void forward_network_gpu(network net, network_state state)
 {
+    state.workspace = net.workspace;
     int i;
     for(i = 0; i < net.n; ++i){
         state.index = i;
@@ -56,10 +61,14 @@
             forward_local_layer_gpu(l, state);
         } else if(l.type == DETECTION){
             forward_detection_layer_gpu(l, state);
+        } else if(l.type == REGION){
+            forward_region_layer_gpu(l, state);
         } else if(l.type == CONNECTED){
             forward_connected_layer_gpu(l, state);
         } else if(l.type == RNN){
             forward_rnn_layer_gpu(l, state);
+        } else if(l.type == GRU){
+            forward_gru_layer_gpu(l, state);
         } else if(l.type == CRNN){
             forward_crnn_layer_gpu(l, state);
         } else if(l.type == CROP){
@@ -70,8 +79,12 @@
             forward_softmax_layer_gpu(l, state);
         } else if(l.type == NORMALIZATION){
             forward_normalization_layer_gpu(l, state);
+        } else if(l.type == BATCHNORM){
+            forward_batchnorm_layer_gpu(l, state);
         } else if(l.type == MAXPOOL){
             forward_maxpool_layer_gpu(l, state);
+        } else if(l.type == REORG){
+            forward_reorg_layer_gpu(l, state);
         } else if(l.type == AVGPOOL){
             forward_avgpool_layer_gpu(l, state);
         } else if(l.type == DROPOUT){
@@ -87,6 +100,7 @@
 
 void backward_network_gpu(network net, network_state state)
 {
+    state.workspace = net.workspace;
     int i;
     float * original_input = state.input;
     float * original_delta = state.delta;
@@ -111,20 +125,28 @@
             backward_local_layer_gpu(l, state);
         } else if(l.type == MAXPOOL){
             if(i != 0) backward_maxpool_layer_gpu(l, state);
+        } else if(l.type == REORG){
+            backward_reorg_layer_gpu(l, state);
         } else if(l.type == AVGPOOL){
             if(i != 0) backward_avgpool_layer_gpu(l, state);
         } else if(l.type == DROPOUT){
             backward_dropout_layer_gpu(l, state);
         } else if(l.type == DETECTION){
             backward_detection_layer_gpu(l, state);
+        } else if(l.type == REGION){
+            backward_region_layer_gpu(l, state);
         } else if(l.type == NORMALIZATION){
             backward_normalization_layer_gpu(l, state);
+        } else if(l.type == BATCHNORM){
+            backward_batchnorm_layer_gpu(l, state);
         } else if(l.type == SOFTMAX){
             if(i != 0) backward_softmax_layer_gpu(l, state);
         } else if(l.type == CONNECTED){
             backward_connected_layer_gpu(l, state);
         } else if(l.type == RNN){
             backward_rnn_layer_gpu(l, state);
+        } else if(l.type == GRU){
+            backward_gru_layer_gpu(l, state);
         } else if(l.type == CRNN){
             backward_crnn_layer_gpu(l, state);
         } else if(l.type == COST){
@@ -150,6 +172,8 @@
             update_deconvolutional_layer_gpu(l, rate, net.momentum, net.decay);
         } else if(l.type == CONNECTED){
             update_connected_layer_gpu(l, update_batch, rate, net.momentum, net.decay);
+        } else if(l.type == GRU){
+            update_gru_layer_gpu(l, update_batch, rate, net.momentum, net.decay);
         } else if(l.type == RNN){
             update_rnn_layer_gpu(l, update_batch, rate, net.momentum, net.decay);
         } else if(l.type == CRNN){
@@ -160,14 +184,14 @@
     }
 }
 
-float train_network_datum_gpu(network net, float *x, float *y)
+void forward_backward_network_gpu(network net, float *x, float *y)
 {
     network_state state;
     state.index = 0;
     state.net = net;
     int x_size = get_network_input_size(net)*net.batch;
     int y_size = get_network_output_size(net)*net.batch;
-    if(net.layers[net.n-1].type == DETECTION) y_size = net.layers[net.n-1].truths*net.batch;
+    if(net.layers[net.n-1].truths) y_size = net.layers[net.n-1].truths*net.batch;
     if(!*net.input_gpu){
         *net.input_gpu = cuda_make_array(x, x_size);
         *net.truth_gpu = cuda_make_array(y, y_size);
@@ -181,12 +205,164 @@
     state.train = 1;
     forward_network_gpu(net, state);
     backward_network_gpu(net, state);
+}
+
+float train_network_datum_gpu(network net, float *x, float *y)
+{
+    *net.seen += net.batch;
+    forward_backward_network_gpu(net, x, y);
     float error = get_network_cost(net);
     if (((*net.seen) / net.batch) % net.subdivisions == 0) update_network_gpu(net);
 
     return error;
 }
 
+typedef struct {
+    network net;
+    float *X;
+    float *y;
+} train_args;
+
+void *train_thread(void *ptr)
+{
+    train_args args = *(train_args*)ptr;
+
+    cuda_set_device(args.net.gpu_index);
+    forward_backward_network_gpu(args.net, args.X, args.y);
+    free(ptr);
+    return 0;
+}
+
+pthread_t train_network_in_thread(network net, float *X, float *y)
+{
+    pthread_t thread;
+    train_args *ptr = (train_args *)calloc(1, sizeof(train_args));
+    ptr->net = net;
+    ptr->X = X;
+    ptr->y = y;
+    if(pthread_create(&thread, 0, train_thread, ptr)) error("Thread creation failed");
+    return thread;
+}
+
+void pull_updates(layer l)
+{
+#ifdef GPU
+    if(l.type == CONVOLUTIONAL){
+        cuda_pull_array(l.bias_updates_gpu, l.bias_updates, l.n);
+        cuda_pull_array(l.weight_updates_gpu, l.weight_updates, l.n*l.size*l.size*l.c);
+        if(l.scale_updates) cuda_pull_array(l.scale_updates_gpu, l.scale_updates, l.n);
+    } else if(l.type == CONNECTED){
+        cuda_pull_array(l.bias_updates_gpu, l.bias_updates, l.outputs);
+        cuda_pull_array(l.weight_updates_gpu, l.weight_updates, l.outputs*l.inputs);
+    }
+#endif
+}
+
+void push_updates(layer l)
+{
+#ifdef GPU
+    if(l.type == CONVOLUTIONAL){
+        cuda_push_array(l.bias_updates_gpu, l.bias_updates, l.n);
+        cuda_push_array(l.weight_updates_gpu, l.weight_updates, l.n*l.size*l.size*l.c);
+        if(l.scale_updates) cuda_push_array(l.scale_updates_gpu, l.scale_updates, l.n);
+    } else if(l.type == CONNECTED){
+        cuda_push_array(l.bias_updates_gpu, l.bias_updates, l.outputs);
+        cuda_push_array(l.weight_updates_gpu, l.weight_updates, l.outputs*l.inputs);
+    }
+#endif
+}
+
+void merge_updates(layer l, layer base)
+{
+    if (l.type == CONVOLUTIONAL) {
+        axpy_cpu(l.n, 1, l.bias_updates, 1, base.bias_updates, 1);
+        axpy_cpu(l.n*l.size*l.size*l.c, 1, l.weight_updates, 1, base.weight_updates, 1);
+        if (l.scale_updates) {
+            axpy_cpu(l.n, 1, l.scale_updates, 1, base.scale_updates, 1);
+        }
+    } else if(l.type == CONNECTED) {
+        axpy_cpu(l.outputs, 1, l.bias_updates, 1, base.bias_updates, 1);
+        axpy_cpu(l.outputs*l.inputs, 1, l.weight_updates, 1, base.weight_updates, 1);
+    }
+}
+
+void distribute_updates(layer l, layer base)
+{
+    if (l.type == CONVOLUTIONAL) {
+        copy_cpu(l.n, base.bias_updates, 1, l.bias_updates, 1);
+        copy_cpu(l.n*l.size*l.size*l.c, base.weight_updates, 1, l.weight_updates, 1);
+        if (l.scale_updates) {
+            copy_cpu(l.n, base.scale_updates, 1, l.scale_updates, 1);
+        }
+    } else if(l.type == CONNECTED) {
+        copy_cpu(l.outputs, base.bias_updates, 1, l.bias_updates, 1);
+        copy_cpu(l.outputs*l.inputs, base.weight_updates, 1, l.weight_updates, 1);
+    }
+}
+
+void sync_updates(network *nets, int n)
+{
+    int i,j;
+    int layers = nets[0].n;
+    network net = nets[0];
+    for (j = 0; j < layers; ++j) {
+        layer base = net.layers[j];
+        cuda_set_device(net.gpu_index);
+        pull_updates(base);
+        for (i = 1; i < n; ++i) {
+            cuda_set_device(nets[i].gpu_index);
+            layer l = nets[i].layers[j];
+            pull_updates(l);
+            merge_updates(l, base);
+        }
+        for (i = 1; i < n; ++i) {
+            cuda_set_device(nets[i].gpu_index);
+            layer l = nets[i].layers[j];
+            distribute_updates(l, base);
+            push_updates(l);
+        }
+        cuda_set_device(net.gpu_index);
+        push_updates(base);
+    }
+    for (i = 0; i < n; ++i) {
+        cuda_set_device(nets[i].gpu_index);
+        if(i > 0) nets[i].momentum = 0;
+        update_network_gpu(nets[i]);
+    }
+}
+
+float train_networks(network *nets, int n, data d)
+{
+    int batch = nets[0].batch;
+    assert(batch * n == d.X.rows);
+    assert(nets[0].subdivisions % n == 0);
+    float **X = (float **) calloc(n, sizeof(float *));
+    float **y = (float **) calloc(n, sizeof(float *));
+    pthread_t *threads = (pthread_t *) calloc(n, sizeof(pthread_t));
+
+    int i;
+    float sum = 0;
+    for(i = 0; i < n; ++i){
+        X[i] = (float *) calloc(batch*d.X.cols, sizeof(float));
+        y[i] = (float *) calloc(batch*d.y.cols, sizeof(float));
+        get_next_batch(d, batch, i*batch, X[i], y[i]);
+        threads[i] = train_network_in_thread(nets[i], X[i], y[i]);
+    }
+    for(i = 0; i < n; ++i){
+        pthread_join(threads[i], 0);
+        *nets[i].seen += n*nets[i].batch;
+        printf("%f\n", get_network_cost(nets[i]) / batch);
+        sum += get_network_cost(nets[i]);
+        free(X[i]);
+        free(y[i]);
+    }
+    if (((*nets[0].seen) / nets[0].batch) % nets[0].subdivisions == 0) sync_updates(nets, n);
+    free(X);
+    free(y);
+    free(threads);
+    return (float)sum/(n*batch);
+}
+
 float *get_network_output_layer_gpu(network net, int i)
 {
     layer l = net.layers[i];

--
Gitblit v1.10.0