From 5ef74c2031a040f30a670dc7d60790fc6a9ec720 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Fri, 02 May 2014 22:20:34 +0000
Subject: [PATCH] Slowly refactoring and pushing to GPU

---
 /dev/null                 |  236 ---------------------------------
 src/mini_blas.c           |   75 ----------
 Makefile                  |   16 +-
 src/convolutional_layer.c |   17 +-
 src/list.c                |    2 
 src/data.c                |    2 
 src/mini_blas.h           |   11 +
 src/opencl.c              |    5 
 8 files changed, 31 insertions(+), 333 deletions(-)

diff --git a/Makefile b/Makefile
index 3b01ab2..445c775 100644
--- a/Makefile
+++ b/Makefile
@@ -1,29 +1,29 @@
 CC=gcc
 GPU=1
-COMMON=-Wall `pkg-config --cflags opencv` -I/usr/local/cuda/include/
+COMMON=-Wall -Werror -Wfatal-errors `pkg-config --cflags opencv` -I/usr/local/cuda/include/
+ifeq ($(GPU), 1) 
+COMMON+=-DGPU
+else
+endif
 UNAME = $(shell uname)
-OPTS=-O3
+OPTS=-O3 -flto
 ifeq ($(UNAME), Darwin)
 COMMON+= -isystem /usr/local/Cellar/opencv/2.4.6.1/include/opencv -isystem /usr/local/Cellar/opencv/2.4.6.1/include
 ifeq ($(GPU), 1)
 LDFLAGS= -framework OpenCL
 endif
 else
-OPTS+= -march=native
 ifeq ($(GPU), 1)
 LDFLAGS= -lOpenCL
 endif
 endif
 CFLAGS= $(COMMON) $(OPTS)
-CFLAGS= $(COMMON) -O0 -g 
+#CFLAGS= $(COMMON) -O0 -g 
 LDFLAGS+=`pkg-config --libs opencv` -lm
 VPATH=./src/
 EXEC=cnn
 
-OBJ=network.o image.o tests.o connected_layer.o maxpool_layer.o activations.o list.o option_list.o parser.o utils.o data.o matrix.o softmax_layer.o mini_blas.o convolutional_layer.o cpu_gemm.o normalization_layer.o
-ifeq ($(GPU), 1)
-OBJ+=gpu_gemm.o opencl.o 
-endif
+OBJ=network.o image.o tests.o connected_layer.o maxpool_layer.o activations.o list.o option_list.o parser.o utils.o data.o matrix.o softmax_layer.o mini_blas.o convolutional_layer.o gemm.o normalization_layer.o opencl.o im2col.o col2im.o axpy.o
 
 all: $(EXEC)
 
diff --git a/src/convolutional_layer.c b/src/convolutional_layer.c
index 45bb54a..31a4af6 100644
--- a/src/convolutional_layer.c
+++ b/src/convolutional_layer.c
@@ -100,7 +100,7 @@
     float *b = layer.col_image;
     float *c = layer.output;
     for(i = 0; i < layer.batch; ++i){
-        im2col_cpu(in+i*(n/layer.batch),  layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, b+i*(n/layer.batch));
+        im2col_gpu(in+i*(n/layer.batch),  layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, b+i*(n/layer.batch));
     }
     gemm(0,0,m,n,k,1,a,k,b,n,0,c,n);
     activate_array(layer.output, m*n, layer.activation);
@@ -162,16 +162,13 @@
 
 void update_convolutional_layer(convolutional_layer layer, float step, float momentum, float decay)
 {
-    int i;
     int size = layer.size*layer.size*layer.c*layer.n;
-    for(i = 0; i < layer.n; ++i){
-        layer.biases[i] += step*layer.bias_updates[i];
-        layer.bias_updates[i] *= momentum;
-    }
-    for(i = 0; i < size; ++i){
-        layer.filters[i] += step*(layer.filter_updates[i] - decay*layer.filters[i]);
-        layer.filter_updates[i] *= momentum;
-    }
+    axpy_cpu(layer.n, step, layer.bias_updates, 1, layer.biases, 1);
+    scal_cpu(layer.n, momentum, layer.bias_updates, 1);
+
+    scal_cpu(size, 1.-step*decay, layer.filters, 1);
+    axpy_cpu(size, step, layer.filter_updates, 1, layer.filters, 1);
+    scal_cpu(size, momentum, layer.filter_updates, 1);
 }
 
 void test_convolutional_layer()
diff --git a/src/data.c b/src/data.c
index 39ece11..6d2061e 100644
--- a/src/data.c
+++ b/src/data.c
@@ -123,7 +123,7 @@
 {
     data d;
     d.shallow = 0;
-    unsigned long i,j;
+    long i,j;
     matrix X = make_matrix(10000, 3072);
     matrix y = make_matrix(10000, 10);
     d.X = X;
diff --git a/src/gpu_gemm.c b/src/gpu_gemm.c
deleted file mode 100644
index 4a8aaca..0000000
--- a/src/gpu_gemm.c
+++ /dev/null
@@ -1,236 +0,0 @@
-#include <stdio.h>
-#include <stdlib.h>
-#include <string.h>
-#include <time.h>
-#include <math.h>
-
-#include "opencl.h"
-#include "mini_blas.h"
-
-#define STR_HELPER(x) #x
-#define STR(x) STR_HELPER(x)
-
-#define BLOCK 8
-
-cl_kernel get_gemm_kernel()
-{
-    static int init = 0;
-    static cl_kernel gemm_kernel;
-    if(!init){
-        gemm_kernel = get_kernel("src/gemm.cl", "gemm", "-D BLOCK=" STR(BLOCK) );
-        init = 1;
-    }
-    return gemm_kernel;
-}
-
-void gpu_gemm(int TA, int TB, int M, int N, int K, float ALPHA, 
-        float *A, int lda, 
-        float *B, int ldb,
-        float BETA,
-        float *C, int ldc)
-{
-    cl_setup();
-    cl_kernel gemm_kernel = get_gemm_kernel();
-    cl_context context = cl.context;
-    cl_command_queue queue = cl.queue;
-
-    size_t size = sizeof(float)*(TA ? lda*K:lda*M);
-    cl_mem A_gpu = clCreateBuffer(context,
-            CL_MEM_READ_ONLY|CL_MEM_COPY_HOST_PTR,
-            size, A, &cl.error);
-    check_error(cl);
-
-    size = sizeof(float)*(TB ? ldb*N:ldb*K);
-    cl_mem B_gpu = clCreateBuffer(context,
-            CL_MEM_READ_ONLY|CL_MEM_COPY_HOST_PTR,
-            size, B, &cl.error);
-    check_error(cl);
-
-    size = sizeof(float)*(ldc*M);
-    cl_mem C_gpu = clCreateBuffer(context,
-            CL_MEM_WRITE_ONLY|CL_MEM_COPY_HOST_PTR,
-            size, C, &cl.error);
-    check_error(cl);
-
-    cl_uint i = 0;
-    cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(TA), (void*) &TA);
-    cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(TB), (void*) &TB);
-    cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(M), (void*) &M);
-    cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(N), (void*) &N);
-    cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(K), (void*) &K);
-    cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(ALPHA), (void*) &ALPHA);
-    cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(A_gpu), (void*) &A_gpu);
-    cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(lda), (void*) &lda);
-    cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(B_gpu), (void*) &B_gpu);
-    cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(ldb), (void*) &ldb);
-    cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(BETA), (void*) &BETA);
-    cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(C_gpu), (void*) &C_gpu);
-    cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(ldc), (void*) &ldc);
-    check_error(cl);
-
-    const size_t global_size[] = {ceil((float)M/BLOCK)*BLOCK, ceil((float)N/BLOCK)*BLOCK};
-    const size_t local_size[] = {BLOCK, BLOCK};
-    //printf("%zd %zd %zd %zd\n", global_size[0], global_size[1], local_size[0], local_size[1]);
-
-    clEnqueueNDRangeKernel(queue, gemm_kernel, 2, 0, global_size, local_size, 0, 0, 0);
-    check_error(cl);
-    clEnqueueReadBuffer(queue, C_gpu, CL_TRUE, 0, size, C, 0, 0, 0);
-    check_error(cl);
-    
-    clReleaseMemObject(A_gpu);
-    clReleaseMemObject(B_gpu);
-    clReleaseMemObject(C_gpu);
-
-}
-
-void time_gpu_random_matrix(int TA, int TB, int m, int k, int n)
-{
-    float *a;
-    if(!TA) a = random_matrix(m,k);
-    else a = random_matrix(k,m);
-    int lda = (!TA)?k:m;
-    float *b;
-    if(!TB) b = random_matrix(k,n);
-    else b = random_matrix(n,k);
-    int ldb = (!TB)?n:k;
-
-    float *c = random_matrix(m,n);
-    int i;
-    clock_t start = clock(), end;
-    for(i = 0; i<1000; ++i){
-        gpu_gemm(TA,TB,m,n,k,1,a,lda,b,ldb,1,c,n);
-    }
-    end = clock();
-    printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %lf ms\n",m,k,k,n, TA, TB, (float)(end-start)/CLOCKS_PER_SEC);
-    free(a);
-    free(b);
-    free(c);
-}
-
-void test_gpu_accuracy(int TA, int TB, int m, int k, int n)
-{
-    srand(0);
-    float *a;
-    if(!TA) a = random_matrix(m,k);
-    else a = random_matrix(k,m);
-    int lda = (!TA)?k:m;
-    float *b;
-    if(!TB) b = random_matrix(k,n);
-    else b = random_matrix(n,k);
-    int ldb = (!TB)?n:k;
-
-    float *c = random_matrix(m,n);
-    float *c_gpu = random_matrix(m,n);
-    memset(c, 0, m*n*sizeof(float));
-    memset(c_gpu, 0, m*n*sizeof(float));
-    int i;
-        //pm(m,k,b);
-        gpu_gemm(TA,TB,m,n,k,1,a,lda,b,ldb,1,c_gpu,n);
-        //pm(m, n, c_gpu);
-        cpu_gemm(TA,TB,m,n,k,1,a,lda,b,ldb,1,c,n);
-        //pm(m, n, c);
-    double sse = 0;
-    for(i = 0; i < m*n; ++i) {
-        //printf("%f %f\n", c[i], c_gpu[i]);
-        sse += pow(c[i]-c_gpu[i], 2);
-    }
-    printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %g MSE\n",m,k,k,n, TA, TB, sse/(m*n));
-    free(a);
-    free(b);
-    free(c);
-}
-
-void test_gpu_blas()
-{
-    test_gpu_accuracy(0,0,17,10,10); 
-    test_gpu_accuracy(1,0,17,10,10); 
-    test_gpu_accuracy(0,1,17,10,10); 
-    test_gpu_accuracy(1,1,17,10,10); 
-
-    test_gpu_accuracy(0,0,1000,10,100); 
-    test_gpu_accuracy(1,0,1000,10,100); 
-    test_gpu_accuracy(0,1,1000,10,100); 
-    test_gpu_accuracy(1,1,1000,10,100); 
-
-    time_gpu_random_matrix(0,0,1000,1000,100); 
-    time_random_matrix(0,0,1000,1000,100); 
-
-    time_gpu_random_matrix(0,1,1000,1000,100); 
-    time_random_matrix(0,1,1000,1000,100); 
-
-    time_gpu_random_matrix(1,0,1000,1000,100); 
-    time_random_matrix(1,0,1000,1000,100); 
-
-    time_gpu_random_matrix(1,1,1000,1000,100); 
-    time_random_matrix(1,1,1000,1000,100); 
-
-}
-
-/*
-cl_kernel get_gemm_kernel_slow()
-{
-    static int init = 0;
-    static cl_kernel gemm_kernel;
-    if(!init){
-        gemm_kernel = get_kernel("src/gemm.cl", "gemm_slow");
-        init = 1;
-    }
-    return gemm_kernel;
-}
-
-void gpu_gemm_slow(int TA, int TB, int M, int N, int K, float ALPHA, 
-        float *A, int lda, 
-        float *B, int ldb,
-        float BETA,
-        float *C, int ldc)
-{
-    cl_setup();
-    cl_kernel gemm_kernel = get_gemm_kernel_slow();
-    cl_context context = cl.context;
-    cl_command_queue queue = cl.queue;
-
-    size_t size = sizeof(float)*(TA ? lda*K:lda*M);
-    cl_mem A_gpu = clCreateBuffer(context,
-            CL_MEM_READ_ONLY|CL_MEM_COPY_HOST_PTR,
-            size, A, &cl.error);
-    check_error(cl);
-
-    size = sizeof(float)*(TB ? ldb*N:ldb*K);
-    cl_mem B_gpu = clCreateBuffer(context,
-            CL_MEM_READ_ONLY|CL_MEM_COPY_HOST_PTR,
-            size, B, &cl.error);
-    check_error(cl);
-
-    size = sizeof(float)*(ldc*M);
-    cl_mem C_gpu = clCreateBuffer(context,
-            CL_MEM_READ_ONLY|CL_MEM_COPY_HOST_PTR,
-            size, C, &cl.error);
-    check_error(cl);
-
-    cl_uint i = 0;
-    cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(TA), (void*) &TA);
-    cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(TB), (void*) &TB);
-    cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(M), (void*) &M);
-    cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(N), (void*) &N);
-    cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(K), (void*) &K);
-    cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(ALPHA), (void*) &ALPHA);
-    cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(A_gpu), (void*) &A_gpu);
-    cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(lda), (void*) &lda);
-    cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(B_gpu), (void*) &B_gpu);
-    cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(ldb), (void*) &ldb);
-    cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(BETA), (void*) &BETA);
-    cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(C_gpu), (void*) &C_gpu);
-    cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(ldc), (void*) &ldc);
-    check_error(cl);
-
-    const size_t global_size[] = {M, N};
-
-    clEnqueueNDRangeKernel(queue, gemm_kernel, 2, 0, global_size, 0, 0, 0, 0);
-    clEnqueueReadBuffer(queue, C_gpu, CL_TRUE, 0, size, C, 0, 0, 0);
-    
-    clReleaseMemObject(A_gpu);
-    clReleaseMemObject(B_gpu);
-    clReleaseMemObject(C_gpu);
-
-}
-*/
diff --git a/src/list.c b/src/list.c
index 948d960..0e4165d 100644
--- a/src/list.c
+++ b/src/list.c
@@ -11,6 +11,7 @@
 	return l;
 }
 
+/*
 void transfer_node(list *s, list *d, node *n)
 {
     node *prev, *next;
@@ -22,6 +23,7 @@
     if(s->front == n) s->front = next;
     if(s->back == n) s->back = prev;
 }
+*/
 
 void *list_pop(list *l){
     if(!l->back) return 0;
diff --git a/src/mini_blas.c b/src/mini_blas.c
index 70dcb54..eb6953d 100644
--- a/src/mini_blas.c
+++ b/src/mini_blas.c
@@ -1,4 +1,3 @@
-
 #include <stdlib.h>
 #include <stdio.h>
 #include <math.h>
@@ -18,77 +17,7 @@
     printf("\n");
 }
 
-void gemm(int TA, int TB, int M, int N, int K, float ALPHA, 
-        float *A, int lda, 
-        float *B, int ldb,
-        float BETA,
-        float *C, int ldc)
-{
-    gpu_gemm( TA,  TB,  M, N, K, ALPHA,A,lda, B, ldb,BETA,C,ldc);
-}
-
-void im2row(float *image, int h, int w, int c, int size, int stride, float *matrix)
-{
-    int i;
-    int mc = c;
-    int mw = (size*size);
-    int mh = ((h-size)/stride+1)*((w-size)/stride+1);
-    int msize = mc*mw*mh;
-    for(i = 0; i < msize; ++i){
-        int channel = i/(mh*mw);
-        int block =   (i%(mh*mw))/mw;
-        int position = i%mw;
-        int block_h = block/((w-size)/stride+1);
-        int block_w = block%((w-size)/stride+1);
-        int ph, pw, pc;
-        ph = position/size+block_h;
-        pw = position%size+block_w;
-        pc = channel;
-        matrix[i] = image[pc*h*w+ph*w+pw];
-    }
-}
-void im2col(float *image, int h, int w, int c, int size, int stride, float *matrix)
-{
-    int b,p;
-    int blocks = ((h-size)/stride+1)*((w-size)/stride+1);
-    int pixels = (size*size*c);
-    for(b = 0; b < blocks; ++b){
-        int block_h = b/((w-size)/stride+1);
-        int block_w = b%((w-size)/stride+1);
-        for(p = 0; p < pixels; ++p){
-            int ph, pw, pc;
-            int position = p%(size*size);
-            pc = p/(size*size);
-            ph = position/size+block_h;
-            pw = position%size+block_w;
-            matrix[b+p*blocks] = image[pc*h*w+ph*w+pw];
-        }
-    }
-}
-
-//From Berkeley Vision's Caffe!
-void im2col_cpu(float* data_im, const int channels,
-        const int height, const int width, const int ksize, const int stride,
-        float* data_col) 
-{
-    int c,h,w;
-    int height_col = (height - ksize) / stride + 1;
-    int width_col = (width - ksize) / stride + 1;
-    int channels_col = channels * ksize * ksize;
-    for ( c = 0; c < channels_col; ++c) {
-        int w_offset = c % ksize;
-        int h_offset = (c / ksize) % ksize;
-        int c_im = c / ksize / ksize;
-        for ( h = 0; h < height_col; ++h) {
-            for ( w = 0; w < width_col; ++w) {
-                data_col[(c * height_col + h) * width_col + w] =
-                    data_im[(c_im * height + h * stride + h_offset) * width
-                    + w * stride + w_offset];
-            }
-        }
-    }
-}
-
+//This one might be too, can't remember.
 void col2im_cpu(float* data_col, const int channels,
         const int height, const int width, const int ksize, const int stride,
         float* data_im) 
@@ -135,7 +64,7 @@
     int i;
     clock_t start = clock(), end;
     for(i = 0; i<1000; ++i){
-        cpu_gemm(TA,TB,m,n,k,1,a,lda,b,ldb,1,c,n);
+        gemm_cpu(TA,TB,m,n,k,1,a,lda,b,ldb,1,c,n);
     }
     end = clock();
     printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %lf ms\n",m,k,k,n, TA, TB, (float)(end-start)/CLOCKS_PER_SEC);
diff --git a/src/mini_blas.h b/src/mini_blas.h
index 31af193..34f15de 100644
--- a/src/mini_blas.h
+++ b/src/mini_blas.h
@@ -6,8 +6,9 @@
                     float *C, int ldc);
 float *random_matrix(int rows, int cols);
 void time_random_matrix(int TA, int TB, int m, int k, int n);
-void im2row(float *image, int h, int w, int c, int size, int stride, float *matrix);
-void im2col(float *image, int h, int w, int c, int size, int stride, float *matrix);
+void im2col_gpu(float* data_im, const int channels,
+        const int height, const int width, const int ksize, const int stride,
+        float* data_col);
 void im2col_cpu(float* data_im, const int channels,
         const int height, const int width, const int ksize, const int stride,
         float* data_col);
@@ -16,14 +17,16 @@
         float* data_im);
 void test_blas();
 
-void gpu_gemm(int TA, int TB, int M, int N, int K, float ALPHA, 
+void gemm_gpu(int TA, int TB, int M, int N, int K, float ALPHA, 
         float *A, int lda, 
         float *B, int ldb,
         float BETA,
         float *C, int ldc);
-void cpu_gemm(int TA, int TB, int M, int N, int K, float ALPHA, 
+void gemm_cpu(int TA, int TB, int M, int N, int K, float ALPHA, 
                     float *A, int lda, 
                     float *B, int ldb,
                     float BETA,
                     float *C, int ldc);
+void axpy_cpu(int N, float ALPHA, float *X, int INCX, float *Y, int INCY);
+void scal_cpu(int N, float ALPHA, float *X, int INCX);
 void test_gpu_blas();
diff --git a/src/opencl.c b/src/opencl.c
index 08bc8a7..0d645ba 100644
--- a/src/opencl.c
+++ b/src/opencl.c
@@ -1,3 +1,4 @@
+#ifdef GPU
 #include "opencl.h"
 #include <stdio.h>
 #include <stdlib.h>
@@ -12,6 +13,7 @@
 {
     if (info.error != CL_SUCCESS) {
         printf("\n Error number %d", info.error);
+        exit(1);
     }
 }
 
@@ -66,6 +68,7 @@
 		clGetProgramBuildInfo( prog, info.device, CL_PROGRAM_BUILD_LOG, 4096, build_c, 0);
 		fprintf(stderr, "Build Log for %s program:\n%s\n", filename, build_c);
 	}
+	check_error(info);
 	return prog;
 }
 
@@ -85,4 +88,4 @@
 	return kernel;
 }
 
-
+#endif

--
Gitblit v1.10.0