From 5f4a5f59b072d4029107422d30b04941424c48b1 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Tue, 24 Feb 2015 02:52:05 +0000
Subject: [PATCH] captcha stuff

---
 src/softmax_layer_kernels.cu |    4 
 src/cost_layer.c             |    4 
 src/softmax_layer.h          |    4 
 src/utils.h                  |    2 
 src/network_kernels.cu       |    5 
 src/data.c                   |  183 ++++++++++-------
 src/softmax_layer.c          |   44 ++-
 src/data.h                   |    7 
 src/image.c                  |   62 +++++-
 src/parser.c                 |    3 
 src/darknet.c                |  261 +++++++++++++++++++------
 src/image.h                  |    4 
 src/utils.c                  |   11 +
 13 files changed, 414 insertions(+), 180 deletions(-)

diff --git a/src/cost_layer.c b/src/cost_layer.c
index a08562b..34c8fb5 100644
--- a/src/cost_layer.c
+++ b/src/cost_layer.c
@@ -49,7 +49,7 @@
     if(layer.type == DETECTION){
         int i;
         for(i = 0; i < layer.batch*layer.inputs; ++i){
-            if((i%5) && !truth[(i/5)*5]) layer.delta[i] = 0;
+            if((i%25) && !truth[(i/25)*25]) layer.delta[i] = 0;
         }
     }
     *(layer.output) = dot_cpu(layer.batch*layer.inputs, layer.delta, 1, layer.delta, 1);
@@ -71,7 +71,7 @@
     axpy_ongpu(layer.batch*layer.inputs, -1, input, 1, layer.delta_gpu, 1);
 
     if(layer.type==DETECTION){
-        mask_ongpu(layer.inputs*layer.batch, layer.delta_gpu, truth, 5);
+        mask_ongpu(layer.inputs*layer.batch, layer.delta_gpu, truth, 25);
     }
 
     cuda_pull_array(layer.delta_gpu, layer.delta, layer.batch*layer.inputs);
diff --git a/src/darknet.c b/src/darknet.c
index 92a9196..fc58f3d 100644
--- a/src/darknet.c
+++ b/src/darknet.c
@@ -31,14 +31,17 @@
     save_network(net, "cfg/trained_imagenet_smaller.cfg");
 }
 
+char *class_names[] = {"aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"};
 #define AMNT 3
 void draw_detection(image im, float *box, int side)
 {
+    int classes = 20;
+    int elems = 4+classes+1;
     int j;
     int r, c;
     float amount[AMNT] = {0};
     for(r = 0; r < side*side; ++r){
-        float val = box[r*5];
+        float val = box[r*elems];
         for(j = 0; j < AMNT; ++j){
             if(val > amount[j]) {
                 float swap = val;
@@ -51,21 +54,29 @@
 
     for(r = 0; r < side; ++r){
         for(c = 0; c < side; ++c){
-            j = (r*side + c) * 5;
-            printf("Prob: %f\n", box[j]);
+            j = (r*side + c) * elems;
+            //printf("%d\n", j);
+            //printf("Prob: %f\n", box[j]);
             if(box[j] >= smallest){
+                int class = max_index(box+j+1, classes);
+                int z;
+                for(z = 0; z < classes; ++z) printf("%f %s\n", box[j+1+z], class_names[z]);
+                printf("%f %s\n", box[j+1+class], class_names[class]);
+                float red = get_color(0,class,classes);
+                float green = get_color(1,class,classes);
+                float blue = get_color(2,class,classes);
+
+                j += classes;
                 int d = im.w/side;
                 int y = r*d+box[j+1]*d;
                 int x = c*d+box[j+2]*d;
                 int h = box[j+3]*im.h;
                 int w = box[j+4]*im.w;
-                //printf("%f %f %f %f\n", box[j+1], box[j+2], box[j+3], box[j+4]);
-                //printf("%d %d %d %d\n", x, y, w, h);
-                //printf("%d %d %d %d\n", x-w/2, y-h/2, x+w/2, y+h/2);
-                draw_box(im, x-w/2, y-h/2, x+w/2, y+h/2);
+                draw_box(im, x-w/2, y-h/2, x+w/2, y+h/2,red,green,blue);
             }
         }
     }
+    //printf("Done\n");
     show_image(im, "box");
     cvWaitKey(0);
 }
@@ -100,24 +111,24 @@
     srand(time(0));
     //srand(23410);
     int i = net.seen/imgs;
-    list *plist = get_paths("/home/pjreddie/data/imagenet/horse_pos.txt");
+    list *plist = get_paths("/home/pjreddie/data/voc/train.txt");
     char **paths = (char **)list_to_array(plist);
     printf("%d\n", plist->size);
     data train, buffer;
     int im_dim = 512;
     int jitter = 64;
-    pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, im_dim, im_dim, 7, 7, jitter, &buffer);
+    pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, 20, im_dim, im_dim, 7, 7, jitter, &buffer);
     clock_t time;
     while(1){
         i += 1;
         time=clock();
         pthread_join(load_thread, 0);
         train = buffer;
-        load_thread = load_data_detection_thread(imgs, paths, plist->size, im_dim, im_dim, 7, 7, jitter, &buffer);
+        load_thread = load_data_detection_thread(imgs, paths, plist->size, 20, im_dim, im_dim, 7, 7, jitter, &buffer);
 
-        /*
-        image im = float_to_image(im_dim - jitter, im_dim-jitter, 3, train.X.vals[923]);
-        draw_detection(im, train.y.vals[923], 7);
+/*
+        image im = float_to_image(im_dim - jitter, im_dim-jitter, 3, train.X.vals[0]);
+        draw_detection(im, train.y.vals[0], 7);
         show_image(im, "truth");
         cvWaitKey(0);
         */
@@ -128,7 +139,7 @@
         net.seen += imgs;
         avg_loss = avg_loss*.9 + loss*.1;
         printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs);
-        if(i%100==0){
+        if(i%800==0){
             char buff[256];
             sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.weights",base, i);
             save_weights(net, buff);
@@ -146,17 +157,20 @@
     fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
     srand(time(0));
 
-    list *plist = get_paths("/home/pjreddie/data/imagenet/detection.val");
+    list *plist = get_paths("/home/pjreddie/data/voc/val.txt");
     char **paths = (char **)list_to_array(plist);
+    int num_output = 1225;
+    int im_size = 448;
+    int classes = 20;
 
     int m = plist->size;
     int i = 0;
-    int splits = 50;
+    int splits = 100;
     int num = (i+1)*m/splits - i*m/splits;
 
     fprintf(stderr, "%d\n", m);
     data val, buffer;
-    pthread_t load_thread = load_data_thread(paths, num, 0, 0, 245, 224, 224, &buffer);
+    pthread_t load_thread = load_data_thread(paths, num, 0, 0, num_output, im_size, im_size, &buffer);
     clock_t time;
     for(i = 1; i <= splits; ++i){
         time=clock();
@@ -165,23 +179,33 @@
 
         num = (i+1)*m/splits - i*m/splits;
         char **part = paths+(i*m/splits);
-        if(i != splits) load_thread = load_data_thread(part, num, 0, 0, 245, 224, 224, &buffer);
+        if(i != splits) load_thread = load_data_thread(part, num, 0, 0, num_output, im_size, im_size, &buffer);
  
-        fprintf(stderr, "Loaded: %lf seconds\n", sec(clock()-time));
+        fprintf(stderr, "%d: Loaded: %lf seconds\n", i, sec(clock()-time));
         matrix pred = network_predict_data(net, val);
-        int j, k;
+        int j, k, class;
         for(j = 0; j < pred.rows; ++j){
-            for(k = 0; k < pred.cols; k += 5){
-                if (pred.vals[j][k] > .005){
-                    int index = k/5; 
+            for(k = 0; k < pred.cols; k += classes+4+1){
+
+                /*
+                int z;
+                for(z = 0; z < 25; ++z) printf("%f, ", pred.vals[j][k+z]);
+                printf("\n");
+                */
+
+                float p = pred.vals[j][k];
+                //if (pred.vals[j][k] > .001){
+                for(class = 0; class < classes; ++class){
+                    int index = (k)/(classes+4+1); 
                     int r = index/7;
                     int c = index%7;
-                    float y = (32.*(r + pred.vals[j][k+1]))/224.;
-                    float x = (32.*(c + pred.vals[j][k+2]))/224.;
-                    float h = (256.*(pred.vals[j][k+3]))/224.;
-                    float w = (256.*(pred.vals[j][k+4]))/224.;
-                    printf("%d %f %f %f %f %f\n", (i-1)*m/splits + j + 1, pred.vals[j][k], y, x, h, w);
+                    float y = (r + pred.vals[j][k+1+classes])/7.;
+                    float x = (c + pred.vals[j][k+2+classes])/7.;
+                    float h = pred.vals[j][k+3+classes];
+                    float w = pred.vals[j][k+4+classes];
+                    printf("%d %d %f %f %f %f %f\n", (i-1)*m/splits + j, class, p*pred.vals[j][k+class+1], y, x, h, w);
                 }
+                //}
             }
         }
 
@@ -191,44 +215,44 @@
 }
 /*
 
-void train_imagenet_distributed(char *address)
-{
-    float avg_loss = 1;
-    srand(time(0));
-    network net = parse_network_cfg("cfg/net.cfg");
-    set_learning_network(&net, 0, 1, 0);
-    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
-    int imgs = net.batch;
-    int i = 0;
-    char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list");
-    list *plist = get_paths("/data/imagenet/cls.train.list");
-    char **paths = (char **)list_to_array(plist);
-    printf("%d\n", plist->size);
-    clock_t time;
-    data train, buffer;
-    pthread_t load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 224, 224, &buffer);
-    while(1){
-        i += 1;
+   void train_imagenet_distributed(char *address)
+   {
+   float avg_loss = 1;
+   srand(time(0));
+   network net = parse_network_cfg("cfg/net.cfg");
+   set_learning_network(&net, 0, 1, 0);
+   printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
+   int imgs = net.batch;
+   int i = 0;
+   char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list");
+   list *plist = get_paths("/data/imagenet/cls.train.list");
+   char **paths = (char **)list_to_array(plist);
+   printf("%d\n", plist->size);
+   clock_t time;
+   data train, buffer;
+   pthread_t load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 224, 224, &buffer);
+   while(1){
+   i += 1;
 
-        time=clock();
-        client_update(net, address);
-        printf("Updated: %lf seconds\n", sec(clock()-time));
+   time=clock();
+   client_update(net, address);
+   printf("Updated: %lf seconds\n", sec(clock()-time));
 
-        time=clock();
-        pthread_join(load_thread, 0);
-        train = buffer;
-        normalize_data_rows(train);
-        load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 224, 224, &buffer);
-        printf("Loaded: %lf seconds\n", sec(clock()-time));
-        time=clock();
+   time=clock();
+   pthread_join(load_thread, 0);
+   train = buffer;
+   normalize_data_rows(train);
+   load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 224, 224, &buffer);
+   printf("Loaded: %lf seconds\n", sec(clock()-time));
+   time=clock();
 
-        float loss = train_network(net, train);
-        avg_loss = avg_loss*.9 + loss*.1;
-        printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs);
-        free_data(train);
-    }
-}
-*/
+   float loss = train_network(net, train);
+   avg_loss = avg_loss*.9 + loss*.1;
+   printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs);
+   free_data(train);
+   }
+   }
+ */
 
 void convert(char *cfgfile, char *outfile, char *weightfile)
 {
@@ -239,6 +263,111 @@
     save_network(net, outfile);
 }
 
+void train_captcha(char *cfgfile, char *weightfile)
+{
+    float avg_loss = -1;
+    srand(time(0));
+    char *base = basename(cfgfile);
+    printf("%s\n", base);
+    network net = parse_network_cfg(cfgfile);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
+    int imgs = 1024;
+    int i = net.seen/imgs;
+    list *plist = get_paths("/data/captcha/train.list");
+    char **paths = (char **)list_to_array(plist);
+    printf("%d\n", plist->size);
+    clock_t time;
+    while(1){
+        ++i;
+        time=clock();
+        data train = load_data_captcha(paths, imgs, plist->size, 10, 60, 200);
+        translate_data_rows(train, -128);
+        scale_data_rows(train, 1./128);
+        printf("Loaded: %lf seconds\n", sec(clock()-time));
+        time=clock();
+        float loss = train_network(net, train);
+        net.seen += imgs;
+        if(avg_loss == -1) avg_loss = loss;
+        avg_loss = avg_loss*.9 + loss*.1;
+        printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), net.seen);
+        free_data(train);
+        if(i%100==0){
+            char buff[256];
+            sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.weights",base, i);
+            save_weights(net, buff);
+        }
+    }
+}
+
+
+void validate_captcha(char *cfgfile, char *weightfile)
+{
+    srand(time(0));
+    char *base = basename(cfgfile);
+    printf("%s\n", base);
+    network net = parse_network_cfg(cfgfile);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    int imgs = 1000;
+    int numchars = 37;
+    list *plist = get_paths("/data/captcha/valid.list");
+    char **paths = (char **)list_to_array(plist);
+    data valid = load_data_captcha(paths, imgs, 0, 10, 60, 200);
+    translate_data_rows(valid, -128);
+    scale_data_rows(valid, 1./128);
+    matrix pred = network_predict_data(net, valid);
+    int i, k;
+    int correct = 0;
+    int total = 0;
+    int accuracy = 0;
+    for(i = 0; i < imgs; ++i){
+        int allcorrect = 1;
+        for(k = 0; k < 10; ++k){
+            char truth = int_to_alphanum(max_index(valid.y.vals[i]+k*numchars, numchars));
+            char prediction = int_to_alphanum(max_index(pred.vals[i]+k*numchars, numchars));
+            if (truth != prediction) allcorrect=0;
+            if (truth != '.' && truth == prediction) ++correct;
+            if (truth != '.' || truth != prediction) ++total;
+        }
+        accuracy += allcorrect;
+    }
+    printf("Word Accuracy: %f, Char Accuracy %f\n", (float)accuracy/imgs, (float)correct/total);
+    free_data(valid);
+}
+
+void test_captcha(char *cfgfile, char *weightfile)
+{
+    srand(time(0));
+    char *base = basename(cfgfile);
+    printf("%s\n", base);
+    network net = parse_network_cfg(cfgfile);
+    set_batch_network(&net, 1);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    clock_t time;
+    char filename[256];
+    while(1){
+        printf("Enter filename: ");
+        fgets(filename, 256, stdin);
+        strtok(filename, "\n");
+        time = clock();
+        image im = load_image_color(filename, 60, 200);
+        translate_image(im, -128);
+        scale_image(im, 1/128.);
+        float *X = im.data;
+        time=clock();
+        float *predictions = network_predict(net, X);
+        printf("Predicted in %f\n", sec(clock() - time));
+        print_letters(predictions, 10);
+        free_image(im);
+    }
+}
+
 void train_imagenet(char *cfgfile, char *weightfile)
 {
     float avg_loss = -1;
@@ -333,6 +462,7 @@
     if(weightfile){
         load_weights(&net, weightfile);
     }
+    int im_size = 224;
     set_batch_network(&net, 1);
     srand(2222222);
     clock_t time;
@@ -340,7 +470,7 @@
     while(1){
         fgets(filename, 256, stdin);
         strtok(filename, "\n");
-        image im = load_image_color(filename, 224, 224);
+        image im = load_image_color(filename, im_size, im_size);
         translate_image(im, -128);
         scale_image(im, 1/128.);
         printf("%d %d %d\n", im.h, im.w, im.c);
@@ -814,6 +944,9 @@
     else if(0==strcmp(argv[1], "nist")) train_nist(argv[2]);
     else if(0==strcmp(argv[1], "ctest")) test_cifar10(argv[2]);
     else if(0==strcmp(argv[1], "train")) train_imagenet(argv[2], (argc > 3)? argv[3] : 0);
+    else if(0==strcmp(argv[1], "captcha")) train_captcha(argv[2], (argc > 3)? argv[3] : 0);
+    else if(0==strcmp(argv[1], "tcaptcha")) test_captcha(argv[2], (argc > 3)? argv[3] : 0);
+    else if(0==strcmp(argv[1], "vcaptcha")) validate_captcha(argv[2], (argc > 3)? argv[3] : 0);
     else if(0==strcmp(argv[1], "testseg")) test_voc_segment(argv[2], (argc > 3)? argv[3] : 0);
     //else if(0==strcmp(argv[1], "client")) train_imagenet_distributed(argv[2]);
     else if(0==strcmp(argv[1], "detect")) test_detection(argv[2], (argc > 3)? argv[3] : 0);
diff --git a/src/data.c b/src/data.c
index fd6b722..a6b6db3 100644
--- a/src/data.c
+++ b/src/data.c
@@ -17,6 +17,7 @@
     int nh;
     int nw;
     int jitter;
+    int classes;
     data *d;
 };
 
@@ -33,53 +34,16 @@
     return lines;
 }
 
-void fill_truth_detection(char *path, float *truth, int height, int width, int num_height, int num_width, int dy, int dx, int jitter)
+char **get_random_paths(char **paths, int n, int m)
 {
-    int box_height = height/num_height;
-    int box_width = width/num_width;
-    char *labelpath = find_replace(path, "imgs", "det/train");
-    labelpath = find_replace(labelpath, ".JPEG", ".txt");
-    FILE *file = fopen(labelpath, "r");
-    if(!file) file_error(labelpath);
-    float x, y, h, w;
-    while(fscanf(file, "%f %f %f %f", &x, &y, &w, &h) == 4){
-        x *= width + jitter;
-        y *= height + jitter;
-        x -= dx;
-        y -= dy;
-        int i = x/box_width;
-        int j = y/box_height;
-
-        if(i < 0) i = 0;
-        if(i >= num_width) i = num_width-1;
-        if(j < 0) j = 0;
-        if(j >= num_height) j = num_height-1;
-        
-        float dw = (x - i*box_width)/box_width;
-        float dh = (y - j*box_height)/box_height;
-        //printf("%d %d %f %f\n", i, j, dh, dw);
-        int index = (i+j*num_width)*5;
-        truth[index++] = 1;
-        truth[index++] = dh;
-        truth[index++] = dw;
-        truth[index++] = h*(height+jitter)/height;
-        truth[index++] = w*(width+jitter)/width;
-    }
-    fclose(file);
-}
-
-void fill_truth(char *path, char **labels, int k, float *truth)
-{
+    char **random_paths = calloc(n, sizeof(char*));
     int i;
-    memset(truth, 0, k*sizeof(float));
-    int count = 0;
-    for(i = 0; i < k; ++i){
-        if(strstr(path, labels[i])){
-            truth[i] = 1;
-            ++count;
-        }
+    for(i = 0; i < n; ++i){
+        int index = rand()%m;
+        random_paths[i] = paths[index];
+        if(i == 0) printf("%s\n", paths[index]);
     }
-    if(count != 1) printf("%d, %s\n", count, path);
+    return random_paths;
 }
 
 matrix load_image_paths(char **paths, int n, int h, int w)
@@ -98,16 +62,100 @@
     return X;
 }
 
-char **get_random_paths(char **paths, int n, int m)
+void fill_truth_detection(char *path, float *truth, int classes, int height, int width, int num_height, int num_width, int dy, int dx, int jitter, int flip)
 {
-    char **random_paths = calloc(n, sizeof(char*));
+    int box_height = height/num_height;
+    int box_width = width/num_width;
+    char *labelpath = find_replace(path, "VOC2012/JPEGImages", "labels");
+    labelpath = find_replace(labelpath, ".jpg", ".txt");
+    FILE *file = fopen(labelpath, "r");
+    if(!file) file_error(labelpath);
+    float x, y, h, w;
+    int id;
+    while(fscanf(file, "%d %f %f %f %f", &id, &x, &y, &w, &h) == 5){
+        if(flip) x = 1-x;
+        x *= width + jitter;
+        y *= height + jitter;
+        x -= dx;
+        y -= dy;
+        int i = x/box_width;
+        int j = y/box_height;
+
+        if(i < 0) i = 0;
+        if(i >= num_width) i = num_width-1;
+        if(j < 0) j = 0;
+        if(j >= num_height) j = num_height-1;
+        
+        float dw = (x - i*box_width)/box_width;
+        float dh = (y - j*box_height)/box_height;
+        //printf("%d %d %d %f %f\n", id, i, j, dh, dw);
+        int index = (i+j*num_width)*(4+classes+1);
+        truth[index++] = 1;
+        truth[index+id] = 1;
+        index += classes;
+        truth[index++] = dh;
+        truth[index++] = dw;
+        truth[index++] = h*(height+jitter)/height;
+        truth[index++] = w*(width+jitter)/width;
+    }
+    fclose(file);
+}
+
+#define NUMCHARS 37
+
+void print_letters(float *pred, int n)
+{
     int i;
     for(i = 0; i < n; ++i){
-        int index = rand()%m;
-        random_paths[i] = paths[index];
-        if(i == 0) printf("%s\n", paths[index]);
+        int index = max_index(pred+i*NUMCHARS, NUMCHARS);
+        printf("%c", int_to_alphanum(index));
     }
-    return random_paths;
+    printf("\n");
+}
+
+void fill_truth_captcha(char *path, int n, float *truth)
+{
+    char *begin = strrchr(path, '/');
+    ++begin;
+    int i;
+    for(i = 0; i < strlen(begin) && i < n && begin[i] != '.'; ++i){
+        int index = alphanum_to_int(begin[i]);
+        if(index > 35) printf("Bad %c\n", begin[i]);
+        truth[i*NUMCHARS+index] = 1;
+    }
+    for(;i < n; ++i){
+        truth[i*NUMCHARS + NUMCHARS-1] = 1;
+    }
+}
+
+data load_data_captcha(char **paths, int n, int m, int k, int h, int w)
+{
+    if(m) paths = get_random_paths(paths, n, m);
+    data d;
+    d.shallow = 0;
+    d.X = load_image_paths(paths, n, h, w);
+    d.y = make_matrix(n, k*NUMCHARS);
+    int i;
+    for(i = 0; i < n; ++i){
+        fill_truth_captcha(paths[i], k, d.y.vals[i]);
+    }
+    if(m) free(paths);
+    return d;
+}
+
+
+void fill_truth(char *path, char **labels, int k, float *truth)
+{
+    int i;
+    memset(truth, 0, k*sizeof(float));
+    int count = 0;
+    for(i = 0; i < k; ++i){
+        if(strstr(path, labels[i])){
+            truth[i] = 1;
+            ++count;
+        }
+    }
+    if(count != 1) printf("%d, %s\n", count, path);
 }
 
 matrix load_labels_paths(char **paths, int n, char **labels, int k)
@@ -120,17 +168,6 @@
     return y;
 }
 
-matrix load_labels_detection(char **paths, int n, int height, int width, int num_height, int num_width)
-{
-    int k = num_height*num_width*5;
-    matrix y = make_matrix(n, k);
-    int i;
-    for(i = 0; i < n; ++i){
-        fill_truth_detection(paths[i], y.vals[i], height, width, num_height, num_width, 0, 0, 0);
-    }
-    return y;
-}
-
 data load_data_image_pathfile(char *filename, char **labels, int k, int h, int w)
 {
     list *plist = get_paths(filename);
@@ -165,20 +202,22 @@
     }
 }
 
-data load_data_detection_jitter_random(int n, char **paths, int m, int h, int w, int nh, int nw, int jitter)
+data load_data_detection_jitter_random(int n, char **paths, int m, int classes, int h, int w, int nh, int nw, int jitter)
 {
     char **random_paths = get_random_paths(paths, n, m);
     int i;
     data d;
     d.shallow = 0;
     d.X = load_image_paths(random_paths, n, h, w);
-    int k = nh*nw*5;
+    int k = nh*nw*(4+classes+1);
     d.y = make_matrix(n, k);
     for(i = 0; i < n; ++i){
         int dx = rand()%jitter;
         int dy = rand()%jitter;
-        fill_truth_detection(random_paths[i], d.y.vals[i], h-jitter, w-jitter, nh, nw, dy, dx, jitter);
+        int flip = rand()%2;
+        fill_truth_detection(random_paths[i], d.y.vals[i], classes, h-jitter, w-jitter, nh, nw, dy, dx, jitter, flip);
         image a = float_to_image(h, w, 3, d.X.vals[i]);
+        if(flip) flip_image(a);
         jitter_image(a,h-jitter,w-jitter,dy,dx);
     }
     d.X.cols = (h-jitter)*(w-jitter)*3;
@@ -189,14 +228,14 @@
 void *load_detection_thread(void *ptr)
 {
     struct load_args a = *(struct load_args*)ptr;
-    *a.d = load_data_detection_jitter_random(a.n, a.paths, a.m, a.h, a.w, a.nh, a.nw, a.jitter);
+    *a.d = load_data_detection_jitter_random(a.n, a.paths, a.m, a.classes, a.h, a.w, a.nh, a.nw, a.jitter);
     translate_data_rows(*a.d, -128);
     scale_data_rows(*a.d, 1./128);
     free(ptr);
     return 0;
 }
 
-pthread_t load_data_detection_thread(int n, char **paths, int m, int h, int w, int nh, int nw, int jitter, data *d)
+pthread_t load_data_detection_thread(int n, char **paths, int m, int classes, int h, int w, int nh, int nw, int jitter, data *d)
 {
     pthread_t thread;
     struct load_args *args = calloc(1, sizeof(struct load_args));
@@ -207,6 +246,7 @@
     args->w = w;
     args->nh = nh;
     args->nw = nw;
+    args->classes = classes;
     args->jitter = jitter;
     args->d = d;
     if(pthread_create(&thread, 0, load_detection_thread, args)) {
@@ -215,17 +255,6 @@
     return thread;
 }
 
-data load_data_detection_random(int n, char **paths, int m, int h, int w, int nh, int nw)
-{
-    char **random_paths = get_random_paths(paths, n, m);
-    data d;
-    d.shallow = 0;
-    d.X = load_image_paths(random_paths, n, h, w);
-    d.y = load_labels_detection(random_paths, n, h, w, nh, nw);
-    free(random_paths);
-    return d;
-}
-
 data load_data(char **paths, int n, int m, char **labels, int k, int h, int w)
 {
     if(m) paths = get_random_paths(paths, n, m);
diff --git a/src/data.h b/src/data.h
index 13b62d8..6a08c88 100644
--- a/src/data.h
+++ b/src/data.h
@@ -14,12 +14,13 @@
 
 void free_data(data d);
 
+void print_letters(float *pred, int n);
+data load_data_captcha(char **paths, int n, int m, int k, int h, int w);
 data load_data(char **paths, int n, int m, char **labels, int k, int h, int w);
 pthread_t load_data_thread(char **paths, int n, int m, char **labels, int k, int h, int w, data *d);
 
-pthread_t load_data_detection_thread(int n, char **paths, int m, int h, int w, int nh, int nw, int jitter, data *d);
-data load_data_detection_jitter_random(int n, char **paths, int m, int h, int w, int nh, int nw, int jitter);
-data load_data_detection_random(int n, char **paths, int m, int h, int w, int nh, int nw);
+pthread_t load_data_detection_thread(int n, char **paths, int m, int classes, int h, int w, int nh, int nw, int jitter, data *d);
+data load_data_detection_jitter_random(int n, char **paths, int m, int classes, int h, int w, int nh, int nw, int jitter);
 
 data load_data_image_pathfile(char *filename, char **labels, int k, int h, int w);
 data load_cifar10_data(char *filename);
diff --git a/src/image.c b/src/image.c
index a686a3e..53cf281 100644
--- a/src/image.c
+++ b/src/image.c
@@ -4,9 +4,23 @@
 
 int windows = 0;
 
-void draw_box(image a, int x1, int y1, int x2, int y2)
+float colors[6][3] = { {1,0,1}, {0,0,1},{0,1,1},{0,1,0},{1,1,0},{1,0,0} };
+
+float get_color(int c, int x, int max)
 {
-    int i, c;
+    float ratio = ((float)x/max)*5;
+    int i = floor(ratio);
+    int j = ceil(ratio);
+    ratio -= i;
+    float r = (1-ratio) * colors[i][c] + ratio*colors[j][c];
+    printf("%f\n", r);
+    return r;
+}
+
+void draw_box(image a, int x1, int y1, int x2, int y2, float r, float g, float b)
+{
+    normalize_image(a);
+    int i;
     if(x1 < 0) x1 = 0;
     if(x1 >= a.w) x1 = a.w-1;
     if(x2 < 0) x2 = 0;
@@ -17,17 +31,25 @@
     if(y2 < 0) y2 = 0;
     if(y2 >= a.h) y2 = a.h-1;
 
-    for(c = 0; c < a.c; ++c){
-        for(i = x1; i < x2; ++i){
-            a.data[i + y1*a.w + c*a.w*a.h] = (c==0)?1:-1;
-            a.data[i + y2*a.w + c*a.w*a.h] = (c==0)?1:-1;
-        }
+    for(i = x1; i < x2; ++i){
+        a.data[i + y1*a.w + 0*a.w*a.h] = b;
+        a.data[i + y2*a.w + 0*a.w*a.h] = b;
+
+        a.data[i + y1*a.w + 1*a.w*a.h] = g;
+        a.data[i + y2*a.w + 1*a.w*a.h] = g;
+
+        a.data[i + y1*a.w + 2*a.w*a.h] = r;
+        a.data[i + y2*a.w + 2*a.w*a.h] = r;
     }
-    for(c = 0; c < a.c; ++c){
-        for(i = y1; i < y2; ++i){
-            a.data[x1 + i*a.w + c*a.w*a.h] = (c==0)?1:-1;
-            a.data[x2 + i*a.w + c*a.w*a.h] = (c==0)?1:-1;
-        }
+    for(i = y1; i < y2; ++i){
+        a.data[x1 + i*a.w + 0*a.w*a.h] = b;
+        a.data[x2 + i*a.w + 0*a.w*a.h] = b;
+
+        a.data[x1 + i*a.w + 1*a.w*a.h] = g;
+        a.data[x2 + i*a.w + 1*a.w*a.h] = g;
+
+        a.data[x1 + i*a.w + 2*a.w*a.h] = r;
+        a.data[x2 + i*a.w + 2*a.w*a.h] = r;
     }
 }
 
@@ -46,6 +68,22 @@
     }
 }
 
+void flip_image(image a)
+{
+    int i,j,k;
+    for(k = 0; k < a.c; ++k){
+        for(i = 0; i < a.h; ++i){
+            for(j = 0; j < a.w/2; ++j){
+                int index = j + a.w*(i + a.h*(k));
+                int flip = (a.w - j - 1) + a.w*(i + a.h*(k));
+                float swap = a.data[flip];
+                a.data[flip] = a.data[index];
+                a.data[index] = swap;
+            }
+        }
+    }
+}
+
 image image_distance(image a, image b)
 {
     int i,j;
diff --git a/src/image.h b/src/image.h
index 219798d..93b9e7e 100644
--- a/src/image.h
+++ b/src/image.h
@@ -11,8 +11,10 @@
     float *data;
 } image;
 
+float get_color(int c, int x, int max);
 void jitter_image(image a, int h, int w, int dh, int dw);
-void draw_box(image a, int x1, int y1, int x2, int y2);
+void flip_image(image a);
+void draw_box(image a, int x1, int y1, int x2, int y2, float r, float g, float b);
 image image_distance(image a, image b);
 void scale_image(image m, float s);
 void translate_image(image m, float s);
diff --git a/src/network_kernels.cu b/src/network_kernels.cu
index 1f3f2e0..b83d056 100644
--- a/src/network_kernels.cu
+++ b/src/network_kernels.cu
@@ -21,6 +21,7 @@
 
 extern "C" float * get_network_output_gpu_layer(network net, int i);
 extern "C" float * get_network_delta_gpu_layer(network net, int i);
+float *get_network_output_gpu(network net);
 
 void forward_network_gpu(network net, float * input, float * truth, int train)
 {
@@ -219,6 +220,10 @@
   //time = clock();
     update_network_gpu(net);
     float error = get_network_cost(net);
+
+    //print_letters(y, 50);
+    //float *out = get_network_output_gpu(net);
+    //print_letters(out, 50);
   //printf("updt %f\n", sec(clock() - time));
   //time = clock();
     return error;
diff --git a/src/parser.c b/src/parser.c
index 3f94c80..850cc38 100644
--- a/src/parser.c
+++ b/src/parser.c
@@ -191,6 +191,7 @@
 softmax_layer *parse_softmax(list *options, network *net, int count)
 {
     int input;
+    int groups = option_find_int(options, "groups",1);
     if(count == 0){
         input = option_find_int(options, "input",1);
         net->batch = option_find_int(options, "batch",1);
@@ -198,7 +199,7 @@
     }else{
         input =  get_network_output_size_layer(*net, count-1);
     }
-    softmax_layer *layer = make_softmax_layer(net->batch, input);
+    softmax_layer *layer = make_softmax_layer(net->batch, groups, input);
     option_unused(options);
     return layer;
 }
diff --git a/src/softmax_layer.c b/src/softmax_layer.c
index aa5ab06..a200ae5 100644
--- a/src/softmax_layer.c
+++ b/src/softmax_layer.c
@@ -5,16 +5,18 @@
 #include <math.h>
 #include <stdlib.h>
 #include <stdio.h>
+#include <assert.h>
 
-softmax_layer *make_softmax_layer(int batch, int inputs)
+softmax_layer *make_softmax_layer(int batch, int groups, int inputs)
 {
+    assert(inputs%groups == 0);
     fprintf(stderr, "Softmax Layer: %d inputs\n", inputs);
     softmax_layer *layer = calloc(1, sizeof(softmax_layer));
     layer->batch = batch;
+    layer->groups = groups;
     layer->inputs = inputs;
     layer->output = calloc(inputs*batch, sizeof(float));
     layer->delta = calloc(inputs*batch, sizeof(float));
-    layer->jacobian = calloc(inputs*inputs*batch, sizeof(float));
     #ifdef GPU
     layer->output_gpu = cuda_make_array(layer->output, inputs*batch); 
     layer->delta_gpu = cuda_make_array(layer->delta, inputs*batch); 
@@ -22,23 +24,31 @@
     return layer;
 }
 
+void softmax_array(float *input, int n, float *output)
+{
+    int i;
+    float sum = 0;
+    float largest = -FLT_MAX;
+    for(i = 0; i < n; ++i){
+        if(input[i] > largest) largest = input[i];
+    }
+    for(i = 0; i < n; ++i){
+        sum += exp(input[i]-largest);
+    }
+    if(sum) sum = largest+log(sum);
+    else sum = largest-100;
+    for(i = 0; i < n; ++i){
+        output[i] = exp(input[i]-sum);
+    }
+}
+
 void forward_softmax_layer(const softmax_layer layer, float *input)
 {
-    int i,b;
-    for(b = 0; b < layer.batch; ++b){
-        float sum = 0;
-        float largest = -FLT_MAX;
-        for(i = 0; i < layer.inputs; ++i){
-            if(input[i+b*layer.inputs] > largest) largest = input[i+b*layer.inputs];
-        }
-        for(i = 0; i < layer.inputs; ++i){
-            sum += exp(input[i+b*layer.inputs]-largest);
-        }
-        if(sum) sum = largest+log(sum);
-        else sum = largest-100;
-        for(i = 0; i < layer.inputs; ++i){
-            layer.output[i+b*layer.inputs] = exp(input[i+b*layer.inputs]-sum);
-        }
+    int b;
+    int inputs = layer.inputs / layer.groups;
+    int batch = layer.batch * layer.groups;
+    for(b = 0; b < batch; ++b){
+        softmax_array(input+b*inputs, inputs, layer.output+b*inputs);
     }
 }
 
diff --git a/src/softmax_layer.h b/src/softmax_layer.h
index 0cc9d53..1c1cdae 100644
--- a/src/softmax_layer.h
+++ b/src/softmax_layer.h
@@ -4,16 +4,16 @@
 typedef struct {
     int inputs;
     int batch;
+    int groups;
     float *delta;
     float *output;
-    float *jacobian;
     #ifdef GPU
     float * delta_gpu;
     float * output_gpu;
     #endif
 } softmax_layer;
 
-softmax_layer *make_softmax_layer(int batch, int inputs);
+softmax_layer *make_softmax_layer(int batch, int groups, int inputs);
 void forward_softmax_layer(const softmax_layer layer, float *input);
 void backward_softmax_layer(const softmax_layer layer, float *delta);
 
diff --git a/src/softmax_layer_kernels.cu b/src/softmax_layer_kernels.cu
index 61dc607..c0e8bc3 100644
--- a/src/softmax_layer_kernels.cu
+++ b/src/softmax_layer_kernels.cu
@@ -34,7 +34,9 @@
 
 extern "C" void forward_softmax_layer_gpu(const softmax_layer layer, float *input)
 {
-    forward_softmax_layer_kernel<<<cuda_gridsize(layer.batch), BLOCK>>>(layer.inputs, layer.batch, input, layer.output_gpu);
+    int inputs = layer.inputs / layer.groups;
+    int batch = layer.batch * layer.groups;
+    forward_softmax_layer_kernel<<<cuda_gridsize(batch), BLOCK>>>(inputs, batch, input, layer.output_gpu);
     check_error(cudaPeekAtLastError());
 
     /*
diff --git a/src/utils.c b/src/utils.c
index bf02ff3..1db8101 100644
--- a/src/utils.c
+++ b/src/utils.c
@@ -8,6 +8,17 @@
 
 #include "utils.h"
 
+
+int alphanum_to_int(char c)
+{
+    return (c < 58) ? c - 48 : c-87;
+}
+char int_to_alphanum(int i)
+{
+    if (i == 36) return '.';
+    return (i < 10) ? i + 48 : i + 87;
+}
+
 void pm(int M, int N, float *A)
 {
     int i,j;
diff --git a/src/utils.h b/src/utils.h
index e233da8..7ae8a8d 100644
--- a/src/utils.h
+++ b/src/utils.h
@@ -4,6 +4,8 @@
 #include <time.h>
 #include "list.h"
 
+int alphanum_to_int(char c);
+char int_to_alphanum(int i);
 void read_all(int fd, char *buffer, size_t bytes);
 void write_all(int fd, char *buffer, size_t bytes);
 char *find_replace(char *str, char *orig, char *rep);

--
Gitblit v1.10.0