From 5f4a5f59b072d4029107422d30b04941424c48b1 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Tue, 24 Feb 2015 02:52:05 +0000
Subject: [PATCH] captcha stuff

---
 src/network_kernels.cu |   34 +++++++++++++++++++++++++++++++++-
 1 files changed, 33 insertions(+), 1 deletions(-)

diff --git a/src/network_kernels.cu b/src/network_kernels.cu
index 7909e46..b83d056 100644
--- a/src/network_kernels.cu
+++ b/src/network_kernels.cu
@@ -10,6 +10,7 @@
 #include "crop_layer.h"
 #include "connected_layer.h"
 #include "convolutional_layer.h"
+#include "deconvolutional_layer.h"
 #include "maxpool_layer.h"
 #include "cost_layer.h"
 #include "normalization_layer.h"
@@ -20,6 +21,7 @@
 
 extern "C" float * get_network_output_gpu_layer(network net, int i);
 extern "C" float * get_network_delta_gpu_layer(network net, int i);
+float *get_network_output_gpu(network net);
 
 void forward_network_gpu(network net, float * input, float * truth, int train)
 {
@@ -31,6 +33,11 @@
             forward_convolutional_layer_gpu(layer, input);
             input = layer.output_gpu;
         }
+        else if(net.types[i] == DECONVOLUTIONAL){
+            deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+            forward_deconvolutional_layer_gpu(layer, input);
+            input = layer.output_gpu;
+        }
         else if(net.types[i] == COST){
             cost_layer layer = *(cost_layer *)net.layers[i];
             forward_cost_layer_gpu(layer, input, truth);
@@ -58,9 +65,10 @@
         }
         else if(net.types[i] == CROP){
             crop_layer layer = *(crop_layer *)net.layers[i];
-            forward_crop_layer_gpu(layer, input);
+            forward_crop_layer_gpu(layer, train, input);
             input = layer.output_gpu;
         }
+        //cudaDeviceSynchronize();
         //printf("Forward %d %s %f\n", i, get_layer_string(net.types[i]), sec(clock() - time));
     }
 }
@@ -83,6 +91,10 @@
             convolutional_layer layer = *(convolutional_layer *)net.layers[i];
             backward_convolutional_layer_gpu(layer, prev_input, prev_delta);
         }
+        else if(net.types[i] == DECONVOLUTIONAL){
+            deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+            backward_deconvolutional_layer_gpu(layer, prev_input, prev_delta);
+        }
         else if(net.types[i] == COST){
             cost_layer layer = *(cost_layer *)net.layers[i];
             backward_cost_layer_gpu(layer, prev_input, prev_delta);
@@ -115,6 +127,10 @@
             convolutional_layer layer = *(convolutional_layer *)net.layers[i];
             update_convolutional_layer_gpu(layer);
         }
+        else if(net.types[i] == DECONVOLUTIONAL){
+            deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+            update_deconvolutional_layer_gpu(layer);
+        }
         else if(net.types[i] == CONNECTED){
             connected_layer layer = *(connected_layer *)net.layers[i];
             update_connected_layer_gpu(layer);
@@ -128,6 +144,10 @@
         convolutional_layer layer = *(convolutional_layer *)net.layers[i];
         return layer.output_gpu;
     }
+    else if(net.types[i] == DECONVOLUTIONAL){
+        deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+        return layer.output_gpu;
+    }
     else if(net.types[i] == CONNECTED){
         connected_layer layer = *(connected_layer *)net.layers[i];
         return layer.output_gpu;
@@ -156,6 +176,10 @@
         convolutional_layer layer = *(convolutional_layer *)net.layers[i];
         return layer.delta_gpu;
     }
+    else if(net.types[i] == DECONVOLUTIONAL){
+        deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+        return layer.delta_gpu;
+    }
     else if(net.types[i] == CONNECTED){
         connected_layer layer = *(connected_layer *)net.layers[i];
         return layer.delta_gpu;
@@ -196,6 +220,10 @@
   //time = clock();
     update_network_gpu(net);
     float error = get_network_cost(net);
+
+    //print_letters(y, 50);
+    //float *out = get_network_output_gpu(net);
+    //print_letters(out, 50);
   //printf("updt %f\n", sec(clock() - time));
   //time = clock();
     return error;
@@ -207,6 +235,10 @@
         convolutional_layer layer = *(convolutional_layer *)net.layers[i];
         return layer.output;
     }
+    else if(net.types[i] == DECONVOLUTIONAL){
+        deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+        return layer.output;
+    }
     else if(net.types[i] == CONNECTED){
         connected_layer layer = *(connected_layer *)net.layers[i];
         cuda_pull_array(layer.output_gpu, layer.output, layer.outputs*layer.batch);

--
Gitblit v1.10.0