From 617cf313ccb1fe005db3f7d88dec04a04bd97cc2 Mon Sep 17 00:00:00 2001
From: Alexey <AlexeyAB@users.noreply.github.com>
Date: Tue, 28 Nov 2017 10:19:23 +0000
Subject: [PATCH] Update Readme.md - fixed typo

---
 README.md |  123 ++++++++++++++++++++++++++--------------
 1 files changed, 80 insertions(+), 43 deletions(-)

diff --git a/README.md b/README.md
index de794f2..0ee4c05 100644
--- a/README.md
+++ b/README.md
@@ -1,13 +1,16 @@
-# Yolo-Windows v2
+# Yolo-v2 Windows and Linux version
+
+[![CircleCI](https://circleci.com/gh/AlexeyAB/darknet.svg?style=svg)](https://circleci.com/gh/AlexeyAB/darknet)
 
 1. [How to use](#how-to-use)
-2. [How to compile](#how-to-compile)
-3. [How to train (Pascal VOC Data)](#how-to-train-pascal-voc-data)
-4. [How to train (to detect your custom objects)](#how-to-train-to-detect-your-custom-objects)
-5. [When should I stop training](#when-should-i-stop-training)
-6. [How to improve object detection](#how-to-improve-object-detection)
-7. [How to mark bounded boxes of objects and create annotation files](#how-to-mark-bounded-boxes-of-objects-and-create-annotation-files)
-8. [How to use Yolo as DLL](#how-to-use-yolo-as-dll)
+2. [How to compile on Linux](#how-to-compile-on-linux)
+3. [How to compile on Windows](#how-to-compile-on-windows)
+4. [How to train (Pascal VOC Data)](#how-to-train-pascal-voc-data)
+5. [How to train (to detect your custom objects)](#how-to-train-to-detect-your-custom-objects)
+6. [When should I stop training](#when-should-i-stop-training)
+7. [How to improve object detection](#how-to-improve-object-detection)
+8. [How to mark bounded boxes of objects and create annotation files](#how-to-mark-bounded-boxes-of-objects-and-create-annotation-files)
+9. [How to use Yolo as DLL](#how-to-use-yolo-as-dll)
 
 |  ![Darknet Logo](http://pjreddie.com/media/files/darknet-black-small.png) | &nbsp; ![map_fps](https://hsto.org/files/a24/21e/068/a2421e0689fb43f08584de9d44c2215f.jpg) https://arxiv.org/abs/1612.08242 |
 |---|---|
@@ -17,26 +20,34 @@
 
 
 # "You Only Look Once: Unified, Real-Time Object Detection (version 2)"
-A yolo windows version (for object detection)
-
-Contributtors: https://github.com/pjreddie/darknet/graphs/contributors
+A Yolo cross-platform Windows and Linux version (for object detection). Contributtors: https://github.com/pjreddie/darknet/graphs/contributors
 
 This repository is forked from Linux-version: https://github.com/pjreddie/darknet
 
 More details: http://pjreddie.com/darknet/yolo/
 
+This repository supports:
+
+* both Windows and Linux
+* both OpenCV 3.x and OpenCV 2.4.13
+* both cuDNN 5 and cuDNN 6
+* CUDA >= 7.5
+* also create SO-library on Linux and DLL-library on Windows
+
 ##### Requires: 
-* **MS Visual Studio 2015 (v140)**: https://go.microsoft.com/fwlink/?LinkId=532606&clcid=0x409  (or offline [ISO image](https://go.microsoft.com/fwlink/?LinkId=615448&clcid=0x409))
-* **CUDA 8.0 for Windows x64**: https://developer.nvidia.com/cuda-downloads
-* **OpenCV 3.0**: https://sourceforge.net/projects/opencvlibrary/files/opencv-win/3.2.0/opencv-3.2.0-vc14.exe/download
+* **Linux GCC>=4.9 or Windows MS Visual Studio 2015 (v140)**: https://go.microsoft.com/fwlink/?LinkId=532606&clcid=0x409  (or offline [ISO image](https://go.microsoft.com/fwlink/?LinkId=615448&clcid=0x409))
+* **CUDA 8.0**: https://developer.nvidia.com/cuda-downloads
+* **OpenCV 3.x**: https://sourceforge.net/projects/opencvlibrary/files/opencv-win/3.2.0/opencv-3.2.0-vc14.exe/download
 * **or OpenCV 2.4.13**: https://sourceforge.net/projects/opencvlibrary/files/opencv-win/2.4.13/opencv-2.4.13.2-vc14.exe/download
-  - OpenCV allows to show image or video detection in the window and store result to file: test_dnn_out.avi
+  - OpenCV allows to show image or video detection in the window and store result to file that specified in command line `-out_filename res.avi`
+* **GPU with CC >= 2.0** if you use CUDA, or **GPU CC >= 3.0** if you use cuDNN + CUDA: https://en.wikipedia.org/wiki/CUDA#GPUs_supported
 
 ##### Pre-trained models for different cfg-files can be downloaded from (smaller -> faster & lower quality):
-* `yolo.cfg` (256 MB COCO-model) - require 4 GB GPU-RAM: http://pjreddie.com/media/files/yolo.weights
-* `yolo-voc.cfg` (256 MB VOC-model) - require 4 GB GPU-RAM: http://pjreddie.com/media/files/yolo-voc.weights
+* `yolo.cfg` (194 MB COCO-model) - require 4 GB GPU-RAM: http://pjreddie.com/media/files/yolo.weights
+* `yolo-voc.cfg` (194 MB VOC-model) - require 4 GB GPU-RAM: http://pjreddie.com/media/files/yolo-voc.weights
 * `tiny-yolo.cfg` (60 MB COCO-model) - require 1 GB GPU-RAM: http://pjreddie.com/media/files/tiny-yolo.weights
 * `tiny-yolo-voc.cfg` (60 MB VOC-model) - require 1 GB GPU-RAM: http://pjreddie.com/media/files/tiny-yolo-voc.weights
+* `yolo9000.cfg` (186 MB Yolo9000-model) - require 4 GB GPU-RAM: http://pjreddie.com/media/files/yolo9000.weights
 
 Put it near compiled: darknet.exe
 
@@ -53,25 +64,34 @@
 ##### Example of usage in cmd-files from `build\darknet\x64\`:
 
 * `darknet_voc.cmd` - initialization with 194 MB VOC-model yolo-voc.weights & yolo-voc.cfg and waiting for entering the name of the image file
-* `darknet_demo_voc.cmd` - initialization with 194 MB VOC-model yolo-voc.weights & yolo-voc.cfg and play your video file which you must rename to: test.mp4, and store result to: test_dnn_out.avi
-* `darknet_net_cam_voc.cmd` - initialization with 194 MB VOC-model, play video from network video-camera mjpeg-stream (also from you phone) and store result to: test_dnn_out.avi
-* `darknet_web_cam_voc.cmd` - initialization with 194 MB VOC-model, play video from Web-Camera number #0 and store result to: test_dnn_out.avi
+* `darknet_demo_voc.cmd` - initialization with 194 MB VOC-model yolo-voc.weights & yolo-voc.cfg and play your video file which you must rename to: test.mp4
+* `darknet_demo_store.cmd` - initialization with 194 MB VOC-model yolo-voc.weights & yolo-voc.cfg and play your video file which you must rename to: test.mp4, and store result to: res.avi
+* `darknet_net_cam_voc.cmd` - initialization with 194 MB VOC-model, play video from network video-camera mjpeg-stream (also from you phone)
+* `darknet_web_cam_voc.cmd` - initialization with 194 MB VOC-model, play video from Web-Camera number #0
 * `darknet_coco_9000.cmd` - initialization with 186 MB Yolo9000 COCO-model, and show detection on the image: dog.jpg
-* `darknet_coco_9000_demo.cmd` - initialization with 186 MB Yolo9000 COCO-model, and show detection on the video (if it is present): street4k.mp4
+* `darknet_coco_9000_demo.cmd` - initialization with 186 MB Yolo9000 COCO-model, and show detection on the video (if it is present): street4k.mp4, and store result to: res.avi
 
 ##### How to use on the command line:
+
+On Linux use `./darknet` instead of `darknet.exe`, like this:`./darknet detector test ./cfg/coco.data ./cfg/yolo.cfg ./yolo.weights`
+
 * 194 MB COCO-model - image: `darknet.exe detector test data/coco.data yolo.cfg yolo.weights -i 0 -thresh 0.2`
-* Alternative method 256 MB COCO-model - image: `darknet.exe detect yolo.cfg yolo.weights -i 0 -thresh 0.2`
+* Alternative method 194 MB COCO-model - image: `darknet.exe detect yolo.cfg yolo.weights -i 0 -thresh 0.2`
 * 194 MB VOC-model - image: `darknet.exe detector test data/voc.data yolo-voc.cfg yolo-voc.weights -i 0`
 * 194 MB COCO-model - video: `darknet.exe detector demo data/coco.data yolo.cfg yolo.weights test.mp4 -i 0`
 * 194 MB VOC-model - video: `darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights test.mp4 -i 0`
-* Alternative method 256 MB VOC-model - video: `darknet.exe yolo demo yolo-voc.cfg yolo-voc.weights test.mp4 -i 0`
+* 194 MB COCO-model - **save result to the file res.avi**: `darknet.exe detector demo data/coco.data yolo.cfg yolo.weights test.mp4 -i 0 -out_filename res.avi`
+* 194 MB VOC-model - **save result to the file res.avi**: `darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights test.mp4 -i 0 -out_filename res.avi`
+* Alternative method 194 MB VOC-model - video: `darknet.exe yolo demo yolo-voc.cfg yolo-voc.weights test.mp4 -i 0`
 * 60 MB VOC-model for video: `darknet.exe detector demo data/voc.data tiny-yolo-voc.cfg tiny-yolo-voc.weights test.mp4 -i 0`
 * 194 MB COCO-model for net-videocam - Smart WebCam: `darknet.exe detector demo data/coco.data yolo.cfg yolo.weights http://192.168.0.80:8080/video?dummy=param.mjpg -i 0`
 * 194 MB VOC-model for net-videocam - Smart WebCam: `darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights http://192.168.0.80:8080/video?dummy=param.mjpg -i 0`
 * 194 MB VOC-model - WebCamera #0: `darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights -c 0`
 * 186 MB Yolo9000 - image: `darknet.exe detector test cfg/combine9k.data yolo9000.cfg yolo9000.weights`
 * 186 MB Yolo9000 - video: `darknet.exe detector demo cfg/combine9k.data yolo9000.cfg yolo9000.weights test.mp4`
+* To process a list of images `image_list.txt` and save results of detection to `result.txt` use:                             
+    `darknet.exe detector test data/voc.data yolo-voc.cfg yolo-voc.weights < image_list.txt > result.txt`
+    You can comment this line so that each image does not require pressing the button ESC: https://github.com/AlexeyAB/darknet/blob/6ccb41808caf753feea58ca9df79d6367dedc434/src/detector.c#L509
 
 ##### For using network video-camera mjpeg-stream with any Android smartphone:
 
@@ -86,26 +106,37 @@
 4. Replace the address below, on shown in the phone application (Smart WebCam) and launch:
 
 
-* 256 MB COCO-model: `darknet.exe detector demo data/coco.data yolo.cfg yolo.weights http://192.168.0.80:8080/video?dummy=param.mjpg -i 0`
-* 256 MB VOC-model: `darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights http://192.168.0.80:8080/video?dummy=param.mjpg -i 0`
+* 194 MB COCO-model: `darknet.exe detector demo data/coco.data yolo.cfg yolo.weights http://192.168.0.80:8080/video?dummy=param.mjpg -i 0`
+* 194 MB VOC-model: `darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights http://192.168.0.80:8080/video?dummy=param.mjpg -i 0`
+
+### How to compile on Linux:
+
+Just do `make` in the darknet directory.
+Before make, you can set such options in the `Makefile`: [link](https://github.com/AlexeyAB/darknet/blob/9c1b9a2cf6363546c152251be578a21f3c3caec6/Makefile#L1)
+* `GPU=1` to build with CUDA to accelerate by using GPU (CUDA should be in `/usr/local/cuda`)
+* `CUDNN=1` to build with cuDNN v5/v6 to accelerate training by using GPU (cuDNN should be in `/usr/local/cudnn`)
+* `OPENCV=1` to build with OpenCV 3.x/2.4.x - allows to detect on video files and video streams from network cameras or web-cams
+* `DEBUG=1` to bould debug version of Yolo
+* `OPENMP=1` to build with OpenMP support to accelerate Yolo by using multi-core CPU
+* `LIBSO=1` to build a library `darknet.so` and binary runable file `uselib` that uses this library. Or you can try to run so `LD_LIBRARY_PATH=./:$LD_LIBRARY_PATH ./uselib test.mp4` How to use this SO-library from your own code - you can look at C++ example: https://github.com/AlexeyAB/darknet/blob/master/src/yolo_console_dll.cpp
 
 
-### How to compile:
+### How to compile on Windows:
 
-1. If you have MSVS 2015, CUDA 8.0 and OpenCV 3.0 (with paths: `C:\opencv_3.0\opencv\build\include` & `C:\opencv_3.0\opencv\build\x64\vc14\lib`), then start MSVS, open `build\darknet\darknet.sln`, set **x64** and **Release**, and do the: Build -> Build darknet
+1. If you have **MSVS 2015, CUDA 8.0 and OpenCV 3.0** (with paths: `C:\opencv_3.0\opencv\build\include` & `C:\opencv_3.0\opencv\build\x64\vc14\lib`), then start MSVS, open `build\darknet\darknet.sln`, set **x64** and **Release**, and do the: Build -> Build darknet
 
-  1.1. Find files `opencv_world320.dll` and `opencv_ffmpeg320_64.dll` in `C:\opencv_3.0\opencv\build\x64\vc14\bin` and put it near with `darknet.exe`
+    1.1. Find files `opencv_world320.dll` and `opencv_ffmpeg320_64.dll` in `C:\opencv_3.0\opencv\build\x64\vc14\bin` and put it near with `darknet.exe`
 
-2. If you have other version of CUDA (not 8.0) then open `build\darknet\darknet.vcxproj` by using Notepad, find 2 places with "CUDA 8.0" and change it to your CUDA-version, then do step 1
+2. If you have other version of **CUDA (not 8.0)** then open `build\darknet\darknet.vcxproj` by using Notepad, find 2 places with "CUDA 8.0" and change it to your CUDA-version, then do step 1
 
-3. If you have OpenCV 2.4.13 instead of 3.0 then you should change pathes after `\darknet.sln` is opened
+3. If you **don't have GPU**, but have **MSVS 2015 and OpenCV 3.0** (with paths: `C:\opencv_3.0\opencv\build\include` & `C:\opencv_3.0\opencv\build\x64\vc14\lib`), then start MSVS, open `build\darknet\darknet_no_gpu.sln`, set **x64** and **Release**, and do the: Build -> Build darknet
 
-  3.1 (right click on project) -> properties  -> C/C++ -> General -> Additional Include Directories:  `C:\opencv_2.4.13\opencv\build\include`
+4. If you have **OpenCV 2.4.13** instead of 3.0 then you should change pathes after `\darknet.sln` is opened
+
+    4.1 (right click on project) -> properties  -> C/C++ -> General -> Additional Include Directories:  `C:\opencv_2.4.13\opencv\build\include`
   
-  3.2 (right click on project) -> properties  -> Linker -> General -> Additional Library Directories: `C:\opencv_2.4.13\opencv\build\x64\vc14\lib`
+    4.2 (right click on project) -> properties  -> Linker -> General -> Additional Library Directories: `C:\opencv_2.4.13\opencv\build\x64\vc14\lib`
   
-4. If you have other version of OpenCV 2.4.x (not 3.x) then you also should change lines like `#pragma comment(lib, "opencv_core2413.lib")` in the file `\src\detector.c`
-
 5. If you want to build with CUDNN to speed up then:
       
     * download and install **cuDNN 6.0 for CUDA 8.0**: https://developer.nvidia.com/cudnn
@@ -142,8 +173,8 @@
 
     * `cusolver64_80.dll, curand64_80.dll, cudart64_80.dll, cublas64_80.dll` - 80 for CUDA 8.0 or your version, from C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\bin
 
-    * For OpenCV 3.0: `opencv_world320.dll` and `opencv_ffmpeg320_64.dll` from `C:\opencv_3.0\opencv\build\x64\vc14\bin` 
-    * For OpenCV 2.4.13: `opencv_core249.dll`, `opencv_highgui249.dll` and `opencv_ffmpeg249_64.dll` from  `C:\opencv_2.4.9\opencv\build\x64\vc14\bin`
+    * For OpenCV 3.X: `opencv_world320.dll` and `opencv_ffmpeg320_64.dll` from `C:\opencv_3.0\opencv\build\x64\vc14\bin` 
+    * For OpenCV 2.4.13: `opencv_core2413.dll`, `opencv_highgui2413.dll` and `opencv_ffmpeg2413_64.dll` from  `C:\opencv_2.4.13\opencv\build\x64\vc14\bin`
 
 ## How to train (Pascal VOC Data):
 
@@ -174,7 +205,7 @@
 
 1. Train it first on 1 GPU for like 1000 iterations: `darknet.exe detector train data/voc.data yolo-voc.2.0.cfg darknet19_448.conv.23`
 
-2. Then stop and by using partially-trained model `/backup/yolo-voc_1000.weights` run training with multigpu (up to 4 GPUs): `darknet.exe detector train data/voc.data yolo-voc.2.0.cfg yolo-voc_1000.weights -gpus 0,1,2,3`
+2. Then stop and by using partially-trained model `/backup/yolo-voc_1000.weights` run training with multigpu (up to 4 GPUs): `darknet.exe detector train data/voc.data yolo-voc.2.0.cfg /backup/yolo-voc_1000.weights -gpus 0,1,2,3`
 
 https://groups.google.com/d/msg/darknet/NbJqonJBTSY/Te5PfIpuCAAJ
 
@@ -185,9 +216,11 @@
   * change line batch to [`batch=64`](https://github.com/AlexeyAB/darknet/blob/master/build/darknet/x64/yolo-voc.2.0.cfg#L2)
   * change line subdivisions to [`subdivisions=8`](https://github.com/AlexeyAB/darknet/blob/master/build/darknet/x64/yolo-voc.2.0.cfg#L3)
   * change line `classes=20` to your number of objects
-  * change line #237 from [`filters=125`](https://github.com/AlexeyAB/darknet/blob/master/cfg/yolo-voc.2.0.cfg#L224) to `filters=(classes + 5)*5` (generally this depends on the `num` and `coords`, i.e. equal to `(classes + coords + 1)*num`)
+  * change line #237 from [`filters=125`](https://github.com/AlexeyAB/darknet/blob/master/cfg/yolo-voc.2.0.cfg#L224) to: filters=(classes + 5)*5, so if `classes=2` then should be `filter=35`
+  
+  (Generally `filters` depends on the `classes`, `num` and `coords`, i.e. equal to `(classes + coords + 1)*num`)
 
-  For example, for 2 objects, your file `yolo-obj.cfg` should differ from `yolo-voc.2.0.cfg` in such lines:
+  So for example, for 2 objects, your file `yolo-obj.cfg` should differ from `yolo-voc.2.0.cfg` in such lines:
 
   ```
   [convolutional]
@@ -292,6 +325,8 @@
 
 ![precision_recall_iou](https://hsto.org/files/ca8/866/d76/ca8866d76fb840228940dbf442a7f06a.jpg)
 
+How to calculate **mAP** [voc_eval.py](https://github.com/AlexeyAB/darknet/blob/master/scripts/voc_eval.py) or [datascience.stackexchange link](https://datascience.stackexchange.com/questions/16797/what-does-the-notation-map-5-95-mean)
+
 ### Custom object detection:
 
 Example of custom object detection: `darknet.exe detector test data/obj.data yolo-obj.cfg yolo-obj_8000.weights`
@@ -334,18 +369,20 @@
     * to use simple OpenCV-GUI you should uncomment line `//#define OPENCV` in `yolo_console_dll.cpp`-file: [link](https://github.com/AlexeyAB/darknet/blob/a6cbaeecde40f91ddc3ea09aa26a03ab5bbf8ba8/src/yolo_console_dll.cpp#L5)
     * you can see source code of simple example for detection on the video file: [link](https://github.com/AlexeyAB/darknet/blob/ab1c5f9e57b4175f29a6ef39e7e68987d3e98704/src/yolo_console_dll.cpp#L75)
    
-`yolo_cpp_dll.dll`-API: [link](https://github.com/AlexeyAB/darknet/blob/master/src/yolo_v2_class.hpp#L31)
+`yolo_cpp_dll.dll`-API: [link](https://github.com/AlexeyAB/darknet/blob/master/src/yolo_v2_class.hpp#L42)
 ```
 class Detector {
 public:
 	Detector(std::string cfg_filename, std::string weight_filename, int gpu_id = 0);
 	~Detector();
 
-	std::vector<bbox_t> detect(std::string image_filename, float thresh = 0.2);
-	std::vector<bbox_t> detect(image_t img, float thresh = 0.2);
+	std::vector<bbox_t> detect(std::string image_filename, float thresh = 0.2, bool use_mean = false);
+	std::vector<bbox_t> detect(image_t img, float thresh = 0.2, bool use_mean = false);
+	static image_t load_image(std::string image_filename);
+	static void free_image(image_t m);
 
 #ifdef OPENCV
-	std::vector<bbox_t> detect(cv::Mat mat, float thresh = 0.2);
+	std::vector<bbox_t> detect(cv::Mat mat, float thresh = 0.2, bool use_mean = false);
 #endif
 };
 ```

--
Gitblit v1.10.0