From 64aa0180bb74e84a75958b3da0061a9f5615729d Mon Sep 17 00:00:00 2001
From: Alexey <AlexeyAB@users.noreply.github.com>
Date: Sat, 03 Feb 2018 12:42:16 +0000
Subject: [PATCH] Merge pull request #355 from PTS93/patch-1

---
 src/connected_layer.c |  177 ++++++++++++++++++++++++++++++++++++++++++++++++++++------
 1 files changed, 158 insertions(+), 19 deletions(-)

diff --git a/src/connected_layer.c b/src/connected_layer.c
index 2d83dd9..b678ed0 100644
--- a/src/connected_layer.c
+++ b/src/connected_layer.c
@@ -1,4 +1,5 @@
 #include "connected_layer.h"
+#include "batchnorm_layer.h"
 #include "utils.h"
 #include "cuda.h"
 #include "blas.h"
@@ -9,7 +10,7 @@
 #include <stdlib.h>
 #include <string.h>
 
-connected_layer make_connected_layer(int batch, int inputs, int outputs, ACTIVATION activation)
+connected_layer make_connected_layer(int batch, int inputs, int outputs, ACTIVATION activation, int batch_normalize)
 {
     int i;
     connected_layer l = {0};
@@ -18,9 +19,16 @@
     l.inputs = inputs;
     l.outputs = outputs;
     l.batch=batch;
+    l.batch_normalize = batch_normalize;
+    l.h = 1;
+    l.w = 1;
+    l.c = inputs;
+    l.out_h = 1;
+    l.out_w = 1;
+    l.out_c = outputs;
 
-    l.output = calloc(batch*outputs, sizeof(float*));
-    l.delta = calloc(batch*outputs, sizeof(float*));
+    l.output = calloc(batch*outputs, sizeof(float));
+    l.delta = calloc(batch*outputs, sizeof(float));
 
     l.weight_updates = calloc(inputs*outputs, sizeof(float));
     l.bias_updates = calloc(outputs, sizeof(float));
@@ -28,18 +36,44 @@
     l.weights = calloc(outputs*inputs, sizeof(float));
     l.biases = calloc(outputs, sizeof(float));
 
+    l.forward = forward_connected_layer;
+    l.backward = backward_connected_layer;
+    l.update = update_connected_layer;
 
     //float scale = 1./sqrt(inputs);
     float scale = sqrt(2./inputs);
     for(i = 0; i < outputs*inputs; ++i){
-        l.weights[i] = 2*scale*rand_uniform() - scale;
+        l.weights[i] = scale*rand_uniform(-1, 1);
     }
 
     for(i = 0; i < outputs; ++i){
-        l.biases[i] = scale;
+        l.biases[i] = 0;
+    }
+
+    if(batch_normalize){
+        l.scales = calloc(outputs, sizeof(float));
+        l.scale_updates = calloc(outputs, sizeof(float));
+        for(i = 0; i < outputs; ++i){
+            l.scales[i] = 1;
+        }
+
+        l.mean = calloc(outputs, sizeof(float));
+        l.mean_delta = calloc(outputs, sizeof(float));
+        l.variance = calloc(outputs, sizeof(float));
+        l.variance_delta = calloc(outputs, sizeof(float));
+
+        l.rolling_mean = calloc(outputs, sizeof(float));
+        l.rolling_variance = calloc(outputs, sizeof(float));
+
+        l.x = calloc(batch*outputs, sizeof(float));
+        l.x_norm = calloc(batch*outputs, sizeof(float));
     }
 
 #ifdef GPU
+    l.forward_gpu = forward_connected_layer_gpu;
+    l.backward_gpu = backward_connected_layer_gpu;
+    l.update_gpu = update_connected_layer_gpu;
+
     l.weights_gpu = cuda_make_array(l.weights, outputs*inputs);
     l.biases_gpu = cuda_make_array(l.biases, outputs);
 
@@ -48,9 +82,25 @@
 
     l.output_gpu = cuda_make_array(l.output, outputs*batch);
     l.delta_gpu = cuda_make_array(l.delta, outputs*batch);
+    if(batch_normalize){
+        l.scales_gpu = cuda_make_array(l.scales, outputs);
+        l.scale_updates_gpu = cuda_make_array(l.scale_updates, outputs);
+
+        l.mean_gpu = cuda_make_array(l.mean, outputs);
+        l.variance_gpu = cuda_make_array(l.variance, outputs);
+
+        l.rolling_mean_gpu = cuda_make_array(l.mean, outputs);
+        l.rolling_variance_gpu = cuda_make_array(l.variance, outputs);
+
+        l.mean_delta_gpu = cuda_make_array(l.mean, outputs);
+        l.variance_delta_gpu = cuda_make_array(l.variance, outputs);
+
+        l.x_gpu = cuda_make_array(l.output, l.batch*outputs);
+        l.x_norm_gpu = cuda_make_array(l.output, l.batch*outputs);
+    }
 #endif
     l.activation = activation;
-    fprintf(stderr, "Connected Layer: %d inputs, %d outputs\n", inputs, outputs);
+    fprintf(stderr, "connected                            %4d  ->  %4d\n", inputs, outputs);
     return l;
 }
 
@@ -59,6 +109,11 @@
     axpy_cpu(l.outputs, learning_rate/batch, l.bias_updates, 1, l.biases, 1);
     scal_cpu(l.outputs, momentum, l.bias_updates, 1);
 
+    if(l.batch_normalize){
+        axpy_cpu(l.outputs, learning_rate/batch, l.scale_updates, 1, l.scales, 1);
+        scal_cpu(l.outputs, momentum, l.scale_updates, 1);
+    }
+
     axpy_cpu(l.inputs*l.outputs, -decay*batch, l.weights, 1, l.weight_updates, 1);
     axpy_cpu(l.inputs*l.outputs, learning_rate/batch, l.weight_updates, 1, l.weights, 1);
     scal_cpu(l.inputs*l.outputs, momentum, l.weight_updates, 1);
@@ -67,9 +122,7 @@
 void forward_connected_layer(connected_layer l, network_state state)
 {
     int i;
-    for(i = 0; i < l.batch; ++i){
-        copy_cpu(l.outputs, l.biases, 1, l.output + i*l.outputs, 1);
-    }
+    fill_cpu(l.outputs*l.batch, 0, l.output, 1);
     int m = l.batch;
     int k = l.inputs;
     int n = l.outputs;
@@ -77,6 +130,27 @@
     float *b = l.weights;
     float *c = l.output;
     gemm(0,1,m,n,k,1,a,k,b,k,1,c,n);
+    if(l.batch_normalize){
+        if(state.train){
+            mean_cpu(l.output, l.batch, l.outputs, 1, l.mean);
+            variance_cpu(l.output, l.mean, l.batch, l.outputs, 1, l.variance);
+
+            scal_cpu(l.outputs, .95, l.rolling_mean, 1);
+            axpy_cpu(l.outputs, .05, l.mean, 1, l.rolling_mean, 1);
+            scal_cpu(l.outputs, .95, l.rolling_variance, 1);
+            axpy_cpu(l.outputs, .05, l.variance, 1, l.rolling_variance, 1);
+
+            copy_cpu(l.outputs*l.batch, l.output, 1, l.x, 1);
+            normalize_cpu(l.output, l.mean, l.variance, l.batch, l.outputs, 1);   
+            copy_cpu(l.outputs*l.batch, l.output, 1, l.x_norm, 1);
+        } else {
+            normalize_cpu(l.output, l.rolling_mean, l.rolling_variance, l.batch, l.outputs, 1);
+        }
+        scale_bias(l.output, l.scales, l.batch, l.outputs, 1);
+    }
+    for(i = 0; i < l.batch; ++i){
+        axpy_cpu(l.outputs, 1, l.biases, 1, l.output + i*l.outputs, 1);
+    }
     activate_array(l.output, l.outputs*l.batch, l.activation);
 }
 
@@ -87,6 +161,16 @@
     for(i = 0; i < l.batch; ++i){
         axpy_cpu(l.outputs, 1, l.delta + i*l.outputs, 1, l.bias_updates, 1);
     }
+    if(l.batch_normalize){
+        backward_scale_cpu(l.x_norm, l.delta, l.batch, l.outputs, 1, l.scale_updates);
+
+        scale_bias(l.delta, l.scales, l.batch, l.outputs, 1);
+
+        mean_delta_cpu(l.delta, l.variance, l.batch, l.outputs, 1, l.mean_delta);
+        variance_delta_cpu(l.x, l.delta, l.mean, l.variance, l.batch, l.outputs, 1, l.variance_delta);
+        normalize_delta_cpu(l.x, l.mean, l.variance, l.mean_delta, l.variance_delta, l.batch, l.outputs, 1, l.delta);
+    }
+
     int m = l.outputs;
     int k = l.batch;
     int n = l.inputs;
@@ -106,6 +190,41 @@
     if(c) gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
 }
 
+
+void denormalize_connected_layer(layer l)
+{
+    int i, j;
+    for(i = 0; i < l.outputs; ++i){
+        float scale = l.scales[i]/sqrt(l.rolling_variance[i] + .000001);
+        for(j = 0; j < l.inputs; ++j){
+            l.weights[i*l.inputs + j] *= scale;
+        }
+        l.biases[i] -= l.rolling_mean[i] * scale;
+        l.scales[i] = 1;
+        l.rolling_mean[i] = 0;
+        l.rolling_variance[i] = 1;
+    }
+}
+
+
+void statistics_connected_layer(layer l)
+{
+    if(l.batch_normalize){
+        printf("Scales ");
+        print_statistics(l.scales, l.outputs);
+        /*
+        printf("Rolling Mean ");
+        print_statistics(l.rolling_mean, l.outputs);
+        printf("Rolling Variance ");
+        print_statistics(l.rolling_variance, l.outputs);
+        */
+    }
+    printf("Biases ");
+    print_statistics(l.biases, l.outputs);
+    printf("Weights ");
+    print_statistics(l.weights, l.outputs);
+}
+
 #ifdef GPU
 
 void pull_connected_layer(connected_layer l)
@@ -114,6 +233,11 @@
     cuda_pull_array(l.biases_gpu, l.biases, l.outputs);
     cuda_pull_array(l.weight_updates_gpu, l.weight_updates, l.inputs*l.outputs);
     cuda_pull_array(l.bias_updates_gpu, l.bias_updates, l.outputs);
+    if (l.batch_normalize){
+        cuda_pull_array(l.scales_gpu, l.scales, l.outputs);
+        cuda_pull_array(l.rolling_mean_gpu, l.rolling_mean, l.outputs);
+        cuda_pull_array(l.rolling_variance_gpu, l.rolling_variance, l.outputs);
+    }
 }
 
 void push_connected_layer(connected_layer l)
@@ -122,6 +246,11 @@
     cuda_push_array(l.biases_gpu, l.biases, l.outputs);
     cuda_push_array(l.weight_updates_gpu, l.weight_updates, l.inputs*l.outputs);
     cuda_push_array(l.bias_updates_gpu, l.bias_updates, l.outputs);
+    if (l.batch_normalize){
+        cuda_push_array(l.scales_gpu, l.scales, l.outputs);
+        cuda_push_array(l.rolling_mean_gpu, l.rolling_mean, l.outputs);
+        cuda_push_array(l.rolling_variance_gpu, l.rolling_variance, l.outputs);
+    }
 }
 
 void update_connected_layer_gpu(connected_layer l, int batch, float learning_rate, float momentum, float decay)
@@ -129,6 +258,11 @@
     axpy_ongpu(l.outputs, learning_rate/batch, l.bias_updates_gpu, 1, l.biases_gpu, 1);
     scal_ongpu(l.outputs, momentum, l.bias_updates_gpu, 1);
 
+    if(l.batch_normalize){
+        axpy_ongpu(l.outputs, learning_rate/batch, l.scale_updates_gpu, 1, l.scales_gpu, 1);
+        scal_ongpu(l.outputs, momentum, l.scale_updates_gpu, 1);
+    }
+
     axpy_ongpu(l.inputs*l.outputs, -decay*batch, l.weights_gpu, 1, l.weight_updates_gpu, 1);
     axpy_ongpu(l.inputs*l.outputs, learning_rate/batch, l.weight_updates_gpu, 1, l.weights_gpu, 1);
     scal_ongpu(l.inputs*l.outputs, momentum, l.weight_updates_gpu, 1);
@@ -137,9 +271,8 @@
 void forward_connected_layer_gpu(connected_layer l, network_state state)
 {
     int i;
-    for(i = 0; i < l.batch; ++i){
-        copy_ongpu_offset(l.outputs, l.biases_gpu, 0, 1, l.output_gpu, i*l.outputs, 1);
-    }
+    fill_ongpu(l.outputs*l.batch, 0, l.output_gpu, 1);
+
     int m = l.batch;
     int k = l.inputs;
     int n = l.outputs;
@@ -147,22 +280,28 @@
     float * b = l.weights_gpu;
     float * c = l.output_gpu;
     gemm_ongpu(0,1,m,n,k,1,a,k,b,k,1,c,n);
+    if(l.batch_normalize){
+        forward_batchnorm_layer_gpu(l, state);
+    }
+    for(i = 0; i < l.batch; ++i){
+        axpy_ongpu(l.outputs, 1, l.biases_gpu, 1, l.output_gpu + i*l.outputs, 1);
+    }
     activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation);
-
-/*
-    cuda_pull_array(l.output_gpu, l.output, l.outputs*l.batch);
-    float avg = mean_array(l.output, l.outputs*l.batch);
-    printf("%f\n", avg);
-    */
 }
 
 void backward_connected_layer_gpu(connected_layer l, network_state state)
 {
     int i;
+    constrain_ongpu(l.outputs*l.batch, 1, l.delta_gpu, 1);
     gradient_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation, l.delta_gpu);
     for(i = 0; i < l.batch; ++i){
-        axpy_ongpu_offset(l.outputs, 1, l.delta_gpu, i*l.outputs, 1, l.bias_updates_gpu, 0, 1);
+        axpy_ongpu(l.outputs, 1, l.delta_gpu + i*l.outputs, 1, l.bias_updates_gpu, 1);
     }
+
+    if(l.batch_normalize){
+        backward_batchnorm_layer_gpu(l, state);
+    }
+
     int m = l.outputs;
     int k = l.batch;
     int n = l.inputs;

--
Gitblit v1.10.0