From 6553b3f0e3e55fc30a99c7d4b5798aa86d18a114 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Mon, 30 Mar 2015 02:31:47 +0000
Subject: [PATCH] no comment

---
 src/cost_layer.c |   49 ++++++++++++++++++++++---------------------------
 1 files changed, 22 insertions(+), 27 deletions(-)

diff --git a/src/cost_layer.c b/src/cost_layer.c
index a08562b..d2c616f 100644
--- a/src/cost_layer.c
+++ b/src/cost_layer.c
@@ -10,7 +10,6 @@
 COST_TYPE get_cost_type(char *s)
 {
     if (strcmp(s, "sse")==0) return SSE;
-    if (strcmp(s, "detection")==0) return DETECTION;
     fprintf(stderr, "Couldn't find activation function %s, going with SSE\n", s);
     return SSE;
 }
@@ -20,8 +19,6 @@
     switch(a){
         case SSE:
             return "sse";
-        case DETECTION:
-            return "detection";
     }
     return "sse";
 }
@@ -41,47 +38,45 @@
     return layer;
 }
 
-void forward_cost_layer(cost_layer layer, float *input, float *truth)
+void pull_cost_layer(cost_layer layer)
 {
-    if (!truth) return;
-    copy_cpu(layer.batch*layer.inputs, truth, 1, layer.delta, 1);
-    axpy_cpu(layer.batch*layer.inputs, -1, input, 1, layer.delta, 1);
-    if(layer.type == DETECTION){
-        int i;
-        for(i = 0; i < layer.batch*layer.inputs; ++i){
-            if((i%5) && !truth[(i/5)*5]) layer.delta[i] = 0;
-        }
-    }
+    cuda_pull_array(layer.delta_gpu, layer.delta, layer.batch*layer.inputs);
+}
+void push_cost_layer(cost_layer layer)
+{
+    cuda_push_array(layer.delta_gpu, layer.delta, layer.batch*layer.inputs);
+}
+
+void forward_cost_layer(cost_layer layer, network_state state)
+{
+    if (!state.truth) return;
+    copy_cpu(layer.batch*layer.inputs, state.truth, 1, layer.delta, 1);
+    axpy_cpu(layer.batch*layer.inputs, -1, state.input, 1, layer.delta, 1);
     *(layer.output) = dot_cpu(layer.batch*layer.inputs, layer.delta, 1, layer.delta, 1);
     //printf("cost: %f\n", *layer.output);
 }
 
-void backward_cost_layer(const cost_layer layer, float *input, float *delta)
+void backward_cost_layer(const cost_layer layer, network_state state)
 {
-    copy_cpu(layer.batch*layer.inputs, layer.delta, 1, delta, 1);
+    copy_cpu(layer.batch*layer.inputs, layer.delta, 1, state.delta, 1);
 }
 
 #ifdef GPU
 
-void forward_cost_layer_gpu(cost_layer layer, float * input, float * truth)
+void forward_cost_layer_gpu(cost_layer layer, network_state state)
 {
-    if (!truth) return;
-
-    copy_ongpu(layer.batch*layer.inputs, truth, 1, layer.delta_gpu, 1);
-    axpy_ongpu(layer.batch*layer.inputs, -1, input, 1, layer.delta_gpu, 1);
-
-    if(layer.type==DETECTION){
-        mask_ongpu(layer.inputs*layer.batch, layer.delta_gpu, truth, 5);
-    }
+    if (!state.truth) return;
+    
+    copy_ongpu(layer.batch*layer.inputs, state.truth, 1, layer.delta_gpu, 1);
+    axpy_ongpu(layer.batch*layer.inputs, -1, state.input, 1, layer.delta_gpu, 1);
 
     cuda_pull_array(layer.delta_gpu, layer.delta, layer.batch*layer.inputs);
     *(layer.output) = dot_cpu(layer.batch*layer.inputs, layer.delta, 1, layer.delta, 1);
-    //printf("cost: %f\n", *layer.output);
 }
 
-void backward_cost_layer_gpu(const cost_layer layer, float * input, float * delta)
+void backward_cost_layer_gpu(const cost_layer layer, network_state state)
 {
-    copy_ongpu(layer.batch*layer.inputs, layer.delta_gpu, 1, delta, 1);
+    copy_ongpu(layer.batch*layer.inputs, layer.delta_gpu, 1, state.delta, 1);
 }
 #endif
 

--
Gitblit v1.10.0