From 68213b835b9f15cb449ad2037a8b51c17a3de07b Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Mon, 14 Mar 2016 22:10:14 +0000
Subject: [PATCH] Makefile

---
 src/convolutional_kernels.cu |   96 +++++++++++++++++++++++++++++++++++++++++++----
 1 files changed, 87 insertions(+), 9 deletions(-)

diff --git a/src/convolutional_kernels.cu b/src/convolutional_kernels.cu
index 60a1879..85b92df 100644
--- a/src/convolutional_kernels.cu
+++ b/src/convolutional_kernels.cu
@@ -1,3 +1,7 @@
+#include "cuda_runtime.h"
+#include "curand.h"
+#include "cublas_v2.h"
+
 extern "C" {
 #include "convolutional_layer.h"
 #include "gemm.h"
@@ -8,6 +12,21 @@
 #include "cuda.h"
 }
 
+__global__ void binarize_filters_kernel(float *filters, int n, int size, float *binary)
+{
+    int f = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
+    if (f >= n) return;
+    int i = 0;
+    float mean = 0;
+    for(i = 0; i < size; ++i){
+        mean += abs(filters[f*size + i]);
+    }
+    mean = mean / size;
+    for(i = 0; i < size; ++i){
+        binary[f*size + i] = (filters[f*size + i] > 0) ? mean : -mean;
+    }
+}
+
 __global__ void scale_bias_kernel(float *output, float *biases, int n, int size)
 {
     int offset = blockIdx.x * blockDim.x + threadIdx.x;
@@ -46,6 +65,12 @@
     }
 }
 
+void binarize_filters_gpu(float *filters, int n, int size, float *mean)
+{
+    binarize_filters_kernel<<<cuda_gridsize(n), BLOCK>>>(filters, n, size, mean);
+    check_error(cudaPeekAtLastError());
+}
+
 void backward_scale_gpu(float *x_norm, float *delta, int batch, int n, int size, float *scale_updates)
 {
     backward_scale_kernel<<<n, BLOCK>>>(x_norm, delta, batch, n, size, scale_updates);
@@ -90,12 +115,59 @@
     }
 }
 
+__global__ void dot_kernel(float *output, float scale, int batch, int n, int size, float *delta)
+{
+    int index = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
+    int f1 = index / n;
+    int f2 = index % n;
+    if (f2 <= f1) return;
+    
+    float sum = 0;
+    float norm1 = 0;
+    float norm2 = 0;
+    int b, i;
+    for(b = 0; b <  batch; ++b){
+        for(i = 0; i < size; ++i){
+            int i1 = b * size * n + f1 * size + i;
+            int i2 = b * size * n + f2 * size + i;
+            sum += output[i1] * output[i2];
+            norm1 += output[i1] * output[i1];
+            norm2 += output[i2] * output[i2];
+        }
+    }
+    norm1 = sqrt(norm1);
+    norm2 = sqrt(norm2);
+    float norm = norm1 * norm2;
+    sum = sum / norm;
+    for(b = 0; b <  batch; ++b){
+        for(i = 0; i < size; ++i){
+            int i1 = b * size * n + f1 * size + i;
+            int i2 = b * size * n + f2 * size + i;
+            delta[i1] += - scale * sum * output[i2] / norm;
+            delta[i2] += - scale * sum * output[i1] / norm;
+        }
+    }
+}
+
+void dot_error_gpu(layer l)
+{
+    dot_kernel<<<cuda_gridsize(l.n*l.n), BLOCK>>>(l.output_gpu, l.dot, l.batch, l.n, l.out_w * l.out_h, l.delta_gpu);
+    check_error(cudaPeekAtLastError());
+}
+
 void backward_bias_gpu(float *bias_updates, float *delta, int batch, int n, int size)
 {
     backward_bias_kernel<<<n, BLOCK>>>(bias_updates, delta, batch, n, size);
     check_error(cudaPeekAtLastError());
 }
 
+void swap_binary(convolutional_layer *l)
+{
+    float *swap = l->filters_gpu;
+    l->filters_gpu = l->binary_filters_gpu;
+    l->binary_filters_gpu = swap;
+}
+
 void forward_convolutional_layer_gpu(convolutional_layer l, network_state state)
 {
     int i;
@@ -105,6 +177,11 @@
         convolutional_out_width(l);
 
     fill_ongpu(l.outputs*l.batch, 0, l.output_gpu, 1);
+    if(l.binary){
+        binarize_filters_gpu(l.filters_gpu, l.n, l.c*l.size*l.size, l.binary_filters_gpu);
+        swap_binary(&l);
+    }
+
     for(i = 0; i < l.batch; ++i){
         im2col_ongpu(state.input + i*l.c*l.h*l.w, l.c,  l.h,  l.w,  l.size,  l.stride, l.pad, l.col_image_gpu);
         float * a = l.filters_gpu;
@@ -113,19 +190,16 @@
         gemm_ongpu(0,0,m,n,k,1.,a,k,b,n,1.,c+i*m*n,n);
     }
 
-    if(l.batch_normalize){
-        if(state.train){
-            fast_mean_gpu(l.output_gpu, l.batch, l.n, l.out_h*l.out_w, l.spatial_mean_gpu, l.mean_gpu);   
-            fast_variance_gpu(l.output_gpu, l.mean_gpu, l.batch, l.n, l.out_h*l.out_w, l.spatial_variance_gpu, l.variance_gpu);
+    if (l.batch_normalize) {
+        if (state.train) {
+            fast_mean_gpu(l.output_gpu, l.batch, l.n, l.out_h*l.out_w, l.mean_gpu);
+            fast_variance_gpu(l.output_gpu, l.mean_gpu, l.batch, l.n, l.out_h*l.out_w, l.variance_gpu);
 
             scal_ongpu(l.n, .95, l.rolling_mean_gpu, 1);
             axpy_ongpu(l.n, .05, l.mean_gpu, 1, l.rolling_mean_gpu, 1);
             scal_ongpu(l.n, .95, l.rolling_variance_gpu, 1);
             axpy_ongpu(l.n, .05, l.variance_gpu, 1, l.rolling_variance_gpu, 1);
 
-            // cuda_pull_array(l.variance_gpu, l.mean, l.n);
-            // printf("%f\n", l.mean[0]);
-
             copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_gpu, 1);
             normalize_gpu(l.output_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.n, l.out_h*l.out_w);
             copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_norm_gpu, 1);
@@ -138,6 +212,8 @@
     add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.n, n);
 
     activate_array_ongpu(l.output_gpu, m*n*l.batch, l.activation);
+    if(l.dot > 0) dot_error_gpu(l);
+    if(l.binary) swap_binary(&l);
 }
 
 void backward_convolutional_layer_gpu(convolutional_layer l, network_state state)
@@ -157,8 +233,8 @@
 
         scale_bias_gpu(l.delta_gpu, l.scales_gpu, l.batch, l.n, l.out_h*l.out_w);
 
-        fast_mean_delta_gpu(l.delta_gpu, l.variance_gpu, l.batch, l.n, l.out_w*l.out_h, l.spatial_mean_delta_gpu, l.mean_delta_gpu);
-        fast_variance_delta_gpu(l.x_gpu, l.delta_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.n, l.out_w*l.out_h, l.spatial_variance_delta_gpu, l.variance_delta_gpu);
+        fast_mean_delta_gpu(l.delta_gpu, l.variance_gpu, l.batch, l.n, l.out_w*l.out_h, l.mean_delta_gpu);
+        fast_variance_delta_gpu(l.x_gpu, l.delta_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.n, l.out_w*l.out_h, l.variance_delta_gpu);
         normalize_delta_gpu(l.x_gpu, l.mean_gpu, l.variance_gpu, l.mean_delta_gpu, l.variance_delta_gpu, l.batch, l.n, l.out_w*l.out_h, l.delta_gpu);
     }
 
@@ -171,6 +247,7 @@
         gemm_ongpu(0,1,m,n,k,1,a + i*m*k,k,b,k,1,c,n);
 
         if(state.delta){
+            if(l.binary) swap_binary(&l);
             float * a = l.filters_gpu;
             float * b = l.delta_gpu;
             float * c = l.col_image_gpu;
@@ -178,6 +255,7 @@
             gemm_ongpu(1,0,n,k,m,1,a,n,b + i*k*m,k,0,c,k);
 
             col2im_ongpu(l.col_image_gpu, l.c,  l.h,  l.w,  l.size,  l.stride, l.pad, state.delta + i*l.c*l.h*l.w);
+            if(l.binary) swap_binary(&l);
         }
     }
 }

--
Gitblit v1.10.0