From 68213b835b9f15cb449ad2037a8b51c17a3de07b Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Mon, 14 Mar 2016 22:10:14 +0000
Subject: [PATCH] Makefile

---
 src/network_kernels.cu |  334 +++++++++++++++++++++++--------------------------------
 1 files changed, 141 insertions(+), 193 deletions(-)

diff --git a/src/network_kernels.cu b/src/network_kernels.cu
index 1f3f2e0..730634e 100644
--- a/src/network_kernels.cu
+++ b/src/network_kernels.cu
@@ -1,207 +1,173 @@
+#include "cuda_runtime.h"
+#include "curand.h"
+#include "cublas_v2.h"
+
 extern "C" {
 #include <stdio.h>
 #include <time.h>
+#include <assert.h>
 
 #include "network.h"
 #include "image.h"
 #include "data.h"
 #include "utils.h"
+#include "parser.h"
 
 #include "crop_layer.h"
 #include "connected_layer.h"
+#include "rnn_layer.h"
+#include "crnn_layer.h"
+#include "detection_layer.h"
 #include "convolutional_layer.h"
+#include "activation_layer.h"
 #include "deconvolutional_layer.h"
 #include "maxpool_layer.h"
-#include "cost_layer.h"
+#include "avgpool_layer.h"
 #include "normalization_layer.h"
-#include "freeweight_layer.h"
+#include "cost_layer.h"
+#include "local_layer.h"
 #include "softmax_layer.h"
 #include "dropout_layer.h"
+#include "route_layer.h"
+#include "shortcut_layer.h"
+#include "blas.h"
 }
 
-extern "C" float * get_network_output_gpu_layer(network net, int i);
-extern "C" float * get_network_delta_gpu_layer(network net, int i);
+float * get_network_output_gpu_layer(network net, int i);
+float * get_network_delta_gpu_layer(network net, int i);
+float * get_network_output_gpu(network net);
 
-void forward_network_gpu(network net, float * input, float * truth, int train)
+void forward_network_gpu(network net, network_state state)
 {
     int i;
     for(i = 0; i < net.n; ++i){
-        //clock_t time = clock();
-        if(net.types[i] == CONVOLUTIONAL){
-            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-            forward_convolutional_layer_gpu(layer, input);
-            input = layer.output_gpu;
+        state.index = i;
+        layer l = net.layers[i];
+        if(l.delta_gpu){
+            fill_ongpu(l.outputs * l.batch, 0, l.delta_gpu, 1);
         }
-        else if(net.types[i] == DECONVOLUTIONAL){
-            deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
-            forward_deconvolutional_layer_gpu(layer, input);
-            input = layer.output_gpu;
+        if(l.type == CONVOLUTIONAL){
+            forward_convolutional_layer_gpu(l, state);
+        } else if(l.type == DECONVOLUTIONAL){
+            forward_deconvolutional_layer_gpu(l, state);
+        } else if(l.type == ACTIVE){
+            forward_activation_layer_gpu(l, state);
+        } else if(l.type == LOCAL){
+            forward_local_layer_gpu(l, state);
+        } else if(l.type == DETECTION){
+            forward_detection_layer_gpu(l, state);
+        } else if(l.type == CONNECTED){
+            forward_connected_layer_gpu(l, state);
+        } else if(l.type == RNN){
+            forward_rnn_layer_gpu(l, state);
+        } else if(l.type == CRNN){
+            forward_crnn_layer_gpu(l, state);
+        } else if(l.type == CROP){
+            forward_crop_layer_gpu(l, state);
+        } else if(l.type == COST){
+            forward_cost_layer_gpu(l, state);
+        } else if(l.type == SOFTMAX){
+            forward_softmax_layer_gpu(l, state);
+        } else if(l.type == NORMALIZATION){
+            forward_normalization_layer_gpu(l, state);
+        } else if(l.type == MAXPOOL){
+            forward_maxpool_layer_gpu(l, state);
+        } else if(l.type == AVGPOOL){
+            forward_avgpool_layer_gpu(l, state);
+        } else if(l.type == DROPOUT){
+            forward_dropout_layer_gpu(l, state);
+        } else if(l.type == ROUTE){
+            forward_route_layer_gpu(l, net);
+        } else if(l.type == SHORTCUT){
+            forward_shortcut_layer_gpu(l, state);
         }
-        else if(net.types[i] == COST){
-            cost_layer layer = *(cost_layer *)net.layers[i];
-            forward_cost_layer_gpu(layer, input, truth);
-        }
-        else if(net.types[i] == CONNECTED){
-            connected_layer layer = *(connected_layer *)net.layers[i];
-            forward_connected_layer_gpu(layer, input);
-            input = layer.output_gpu;
-        }
-        else if(net.types[i] == MAXPOOL){
-            maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-            forward_maxpool_layer_gpu(layer, input);
-            input = layer.output_gpu;
-        }
-        else if(net.types[i] == SOFTMAX){
-            softmax_layer layer = *(softmax_layer *)net.layers[i];
-            forward_softmax_layer_gpu(layer, input);
-            input = layer.output_gpu;
-        }
-        else if(net.types[i] == DROPOUT){
-            if(!train) continue;
-            dropout_layer layer = *(dropout_layer *)net.layers[i];
-            forward_dropout_layer_gpu(layer, input);
-            input = layer.output_gpu;
-        }
-        else if(net.types[i] == CROP){
-            crop_layer layer = *(crop_layer *)net.layers[i];
-            forward_crop_layer_gpu(layer, train, input);
-            input = layer.output_gpu;
-        }
-        //cudaDeviceSynchronize();
-        //printf("Forward %d %s %f\n", i, get_layer_string(net.types[i]), sec(clock() - time));
+        state.input = l.output_gpu;
     }
 }
 
-void backward_network_gpu(network net, float * input)
+void backward_network_gpu(network net, network_state state)
 {
     int i;
-    float * prev_input;
-    float * prev_delta;
+    float * original_input = state.input;
+    float * original_delta = state.delta;
     for(i = net.n-1; i >= 0; --i){
-        //clock_t time = clock();
+        state.index = i;
+        layer l = net.layers[i];
         if(i == 0){
-            prev_input = input;
-            prev_delta = 0;
+            state.input = original_input;
+            state.delta = original_delta;
         }else{
-            prev_input = get_network_output_gpu_layer(net, i-1);
-            prev_delta = get_network_delta_gpu_layer(net, i-1);
+            layer prev = net.layers[i-1];
+            state.input = prev.output_gpu;
+            state.delta = prev.delta_gpu;
         }
-        if(net.types[i] == CONVOLUTIONAL){
-            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-            backward_convolutional_layer_gpu(layer, prev_input, prev_delta);
+        if(l.type == CONVOLUTIONAL){
+            backward_convolutional_layer_gpu(l, state);
+        } else if(l.type == DECONVOLUTIONAL){
+            backward_deconvolutional_layer_gpu(l, state);
+        } else if(l.type == ACTIVE){
+            backward_activation_layer_gpu(l, state);
+        } else if(l.type == LOCAL){
+            backward_local_layer_gpu(l, state);
+        } else if(l.type == MAXPOOL){
+            if(i != 0) backward_maxpool_layer_gpu(l, state);
+        } else if(l.type == AVGPOOL){
+            if(i != 0) backward_avgpool_layer_gpu(l, state);
+        } else if(l.type == DROPOUT){
+            backward_dropout_layer_gpu(l, state);
+        } else if(l.type == DETECTION){
+            backward_detection_layer_gpu(l, state);
+        } else if(l.type == NORMALIZATION){
+            backward_normalization_layer_gpu(l, state);
+        } else if(l.type == SOFTMAX){
+            if(i != 0) backward_softmax_layer_gpu(l, state);
+        } else if(l.type == CONNECTED){
+            backward_connected_layer_gpu(l, state);
+        } else if(l.type == RNN){
+            backward_rnn_layer_gpu(l, state);
+        } else if(l.type == CRNN){
+            backward_crnn_layer_gpu(l, state);
+        } else if(l.type == COST){
+            backward_cost_layer_gpu(l, state);
+        } else if(l.type == ROUTE){
+            backward_route_layer_gpu(l, net);
+        } else if(l.type == SHORTCUT){
+            backward_shortcut_layer_gpu(l, state);
         }
-        else if(net.types[i] == DECONVOLUTIONAL){
-            deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
-            backward_deconvolutional_layer_gpu(layer, prev_input, prev_delta);
-        }
-        else if(net.types[i] == COST){
-            cost_layer layer = *(cost_layer *)net.layers[i];
-            backward_cost_layer_gpu(layer, prev_input, prev_delta);
-        }
-        else if(net.types[i] == CONNECTED){
-            connected_layer layer = *(connected_layer *)net.layers[i];
-            backward_connected_layer_gpu(layer, prev_input, prev_delta);
-        }
-        else if(net.types[i] == MAXPOOL){
-            maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-            backward_maxpool_layer_gpu(layer, prev_delta);
-        }
-        else if(net.types[i] == DROPOUT){
-            dropout_layer layer = *(dropout_layer *)net.layers[i];
-            backward_dropout_layer_gpu(layer, prev_delta);
-        }
-        else if(net.types[i] == SOFTMAX){
-            softmax_layer layer = *(softmax_layer *)net.layers[i];
-            backward_softmax_layer_gpu(layer, prev_delta);
-        }
-        //printf("Backward %d %s %f\n", i, get_layer_string(net.types[i]), sec(clock() - time));
     }
 }
 
 void update_network_gpu(network net)
 {
     int i;
+    int update_batch = net.batch*net.subdivisions;
+    float rate = get_current_rate(net);
     for(i = 0; i < net.n; ++i){
-        if(net.types[i] == CONVOLUTIONAL){
-            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-            update_convolutional_layer_gpu(layer);
-        }
-        else if(net.types[i] == DECONVOLUTIONAL){
-            deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
-            update_deconvolutional_layer_gpu(layer);
-        }
-        else if(net.types[i] == CONNECTED){
-            connected_layer layer = *(connected_layer *)net.layers[i];
-            update_connected_layer_gpu(layer);
+        layer l = net.layers[i];
+        if(l.type == CONVOLUTIONAL){
+            update_convolutional_layer_gpu(l, update_batch, rate, net.momentum, net.decay);
+        } else if(l.type == DECONVOLUTIONAL){
+            update_deconvolutional_layer_gpu(l, rate, net.momentum, net.decay);
+        } else if(l.type == CONNECTED){
+            update_connected_layer_gpu(l, update_batch, rate, net.momentum, net.decay);
+        } else if(l.type == RNN){
+            update_rnn_layer_gpu(l, update_batch, rate, net.momentum, net.decay);
+        } else if(l.type == CRNN){
+            update_crnn_layer_gpu(l, update_batch, rate, net.momentum, net.decay);
+        } else if(l.type == LOCAL){
+            update_local_layer_gpu(l, update_batch, rate, net.momentum, net.decay);
         }
     }
 }
 
-float * get_network_output_gpu_layer(network net, int i)
-{
-    if(net.types[i] == CONVOLUTIONAL){
-        convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-        return layer.output_gpu;
-    }
-    else if(net.types[i] == DECONVOLUTIONAL){
-        deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
-        return layer.output_gpu;
-    }
-    else if(net.types[i] == CONNECTED){
-        connected_layer layer = *(connected_layer *)net.layers[i];
-        return layer.output_gpu;
-    }
-    else if(net.types[i] == MAXPOOL){
-        maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-        return layer.output_gpu;
-    }
-    else if(net.types[i] == CROP){
-        crop_layer layer = *(crop_layer *)net.layers[i];
-        return layer.output_gpu;
-    }
-    else if(net.types[i] == SOFTMAX){
-        softmax_layer layer = *(softmax_layer *)net.layers[i];
-        return layer.output_gpu;
-    } else if(net.types[i] == DROPOUT){
-        dropout_layer layer = *(dropout_layer *)net.layers[i];
-        return layer.output_gpu;
-    }
-    return 0;
-}
-
-float * get_network_delta_gpu_layer(network net, int i)
-{
-    if(net.types[i] == CONVOLUTIONAL){
-        convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-        return layer.delta_gpu;
-    }
-    else if(net.types[i] == DECONVOLUTIONAL){
-        deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
-        return layer.delta_gpu;
-    }
-    else if(net.types[i] == CONNECTED){
-        connected_layer layer = *(connected_layer *)net.layers[i];
-        return layer.delta_gpu;
-    }
-    else if(net.types[i] == MAXPOOL){
-        maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-        return layer.delta_gpu;
-    }
-    else if(net.types[i] == SOFTMAX){
-        softmax_layer layer = *(softmax_layer *)net.layers[i];
-        return layer.delta_gpu;
-    } else if(net.types[i] == DROPOUT){
-        if(i == 0) return 0;
-        return get_network_delta_gpu_layer(net, i-1);
-    }
-    return 0;
-}
-
 float train_network_datum_gpu(network net, float *x, float *y)
 {
-  //clock_t time = clock();
+    network_state state;
+    state.index = 0;
+    state.net = net;
     int x_size = get_network_input_size(net)*net.batch;
     int y_size = get_network_output_size(net)*net.batch;
+    if(net.layers[net.n-1].type == DETECTION) y_size = net.layers[net.n-1].truths*net.batch;
     if(!*net.input_gpu){
         *net.input_gpu = cuda_make_array(x, x_size);
         *net.truth_gpu = cuda_make_array(y, y_size);
@@ -209,63 +175,45 @@
         cuda_push_array(*net.input_gpu, x, x_size);
         cuda_push_array(*net.truth_gpu, y, y_size);
     }
-  //printf("trans %f\n", sec(clock() - time));
-  //time = clock();
-    forward_network_gpu(net, *net.input_gpu, *net.truth_gpu, 1);
-  //printf("forw %f\n", sec(clock() - time));
-  //time = clock();
-    backward_network_gpu(net, *net.input_gpu);
-  //printf("back %f\n", sec(clock() - time));
-  //time = clock();
-    update_network_gpu(net);
+    state.input = *net.input_gpu;
+    state.delta = 0;
+    state.truth = *net.truth_gpu;
+    state.train = 1;
+    forward_network_gpu(net, state);
+    backward_network_gpu(net, state);
     float error = get_network_cost(net);
-  //printf("updt %f\n", sec(clock() - time));
-  //time = clock();
+    if (((*net.seen) / net.batch) % net.subdivisions == 0) update_network_gpu(net);
+
     return error;
 }
 
 float *get_network_output_layer_gpu(network net, int i)
 {
-    if(net.types[i] == CONVOLUTIONAL){
-        convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-        return layer.output;
-    }
-    else if(net.types[i] == DECONVOLUTIONAL){
-        deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
-        return layer.output;
-    }
-    else if(net.types[i] == CONNECTED){
-        connected_layer layer = *(connected_layer *)net.layers[i];
-        cuda_pull_array(layer.output_gpu, layer.output, layer.outputs*layer.batch);
-        return layer.output;
-    }
-    else if(net.types[i] == MAXPOOL){
-        maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-        return layer.output;
-    }
-    else if(net.types[i] == SOFTMAX){
-        softmax_layer layer = *(softmax_layer *)net.layers[i];
-        pull_softmax_layer_output(layer);
-        return layer.output;
-    }
-    return 0;
+    layer l = net.layers[i];
+    cuda_pull_array(l.output_gpu, l.output, l.outputs*l.batch);
+    return l.output;
 }
 
 float *get_network_output_gpu(network net)
 {
     int i;
-    for(i = net.n-1; i > 0; --i) if(net.types[i] != COST) break;
+    for(i = net.n-1; i > 0; --i) if(net.layers[i].type != COST) break;
     return get_network_output_layer_gpu(net, i);
 }
 
 float *network_predict_gpu(network net, float *input)
 {
-
     int size = get_network_input_size(net) * net.batch;
-    float * input_gpu = cuda_make_array(input, size);
-    forward_network_gpu(net, input_gpu, 0, 0);
+    network_state state;
+    state.index = 0;
+    state.net = net;
+    state.input = cuda_make_array(input, size);
+    state.truth = 0;
+    state.train = 0;
+    state.delta = 0;
+    forward_network_gpu(net, state);
     float *out = get_network_output_gpu(net);
-    cuda_free(input_gpu);
+    cuda_free(state.input);
     return out;
 }
 

--
Gitblit v1.10.0