From 6becd0d11e8f9136d01f79823279cd2ce8db6556 Mon Sep 17 00:00:00 2001
From: Edmond Yoo <hj3yoo@uwaterloo.ca>
Date: Thu, 06 Sep 2018 22:35:39 +0000
Subject: [PATCH] cleaning stuffs - data files moved outside of repo
---
transform_data.py | 100 ++++++++++++++++++++++---------------------------
1 files changed, 45 insertions(+), 55 deletions(-)
diff --git a/transform_data.py b/transform_data.py
index bd6668a..dbfb7ce 100644
--- a/transform_data.py
+++ b/transform_data.py
@@ -1,3 +1,4 @@
+import os
import random
import math
import cv2
@@ -8,8 +9,13 @@
import generate_data
from shapely import geometry
import pytesseract
+import imgaug as ia
+from imgaug import augmenters as iaa
+from imgaug import parameters as iap
card_mask = cv2.imread('data/mask.png')
+data_dir = os.path.abspath('/media/edmond/My Passport/data')
+darknet_dir = os.path.abspath('darknet')
def key_pts_to_yolo(key_pts, w_img, h_img):
@@ -73,7 +79,7 @@
card.scale = scale
pass
- def render(self, visibility=0.5, display=False, debug=False):
+ def render(self, visibility=0.5, display=False, debug=False, aug=None):
"""
Display the current state of the generator
:return: none
@@ -131,6 +137,9 @@
'''
img_result = cv2.GaussianBlur(img_result, (5, 5), 0)
+ if aug is not None:
+ img_result = aug.augment_image(img_result)
+
if display:
cv2.imshow('Result', img_result)
cv2.waitKey(0)
@@ -138,7 +147,7 @@
self.img_result = img_result
pass
- def generate_horizontal_span(self, gap=None, scale=None, shift=None, jitter=None):
+ def generate_horizontal_span(self, gap=None, scale=None, theta=0, shift=None, jitter=None):
"""
Generating the first scenario where the cards are laid out in a straight horizontal line
:return: True if successfully generated, otherwise False
@@ -170,10 +179,12 @@
card.theta = 0
card.shift(shift, shift)
card.rotate(jitter)
+ card.rotate(theta, centre=(self.width // 2 - x_anchor, self.height // 2 - y_anchor))
x_anchor -= gap
+
return True
- def generate_vertical_span(self, gap=None, scale=None, shift=None, jitter=None):
+ def generate_vertical_span(self, gap=None, scale=None, theta=0, shift=None, jitter=None):
"""
Generating the second scenario where the cards are laid out in a straight vertical line
:return: True if successfully generated, otherwise False
@@ -206,6 +217,7 @@
card.theta = 0
card.shift(shift, shift)
card.rotate(jitter)
+ card.rotate(theta, centre=(self.width // 2 - x_anchor, self.height // 2 - y_anchor))
y_anchor += gap
return True
@@ -286,12 +298,12 @@
#print("%s: %.1f visible" % (ext_obj.label, visible_area / obj_area * 100))
ext_obj.visible = obj_area * visibility <= visible_area
- def export_training_data(self, out_name, visibility=0.5):
+ def export_training_data(self, out_name, visibility=0.5, aug=None):
"""
Export the generated training image along with the txt file for all bounding boxes
:return: none
"""
- self.render(visibility)
+ self.render(visibility, aug=aug)
cv2.imwrite(out_name + '.jpg', self.img_result)
out_txt = open(out_name+ '.txt', 'w')
for card in self.cards:
@@ -446,27 +458,29 @@
def main():
random.seed()
+ ia.seed(random.randrange(10000))
- bg_images = generate_data.load_dtd(dump_it=False)
+ bg_images = generate_data.load_dtd(dtd_dir='%s/dtd/images' % data_dir, dump_it=False)
background = generate_data.Backgrounds(images=bg_images)
+
card_pool = pd.DataFrame()
for set_name in fetch_data.all_set_list:
- df = fetch_data.load_all_cards_text('data/csv/%s.csv' % set_name)
+ df = fetch_data.load_all_cards_text('%s/csv/%s.csv' % (data_dir, set_name))
card_pool = card_pool.append(df)
- num_gen = 25600
- num_iter = 3
+ num_gen = 60000
+ num_iter = 1
for i in range(num_gen):
generator = ImageGenerator(background.get_random(), 1440, 960)
- out_name = 'data/train/non_obstructive/'
+ out_name = ''
for _, card_info in card_pool.sample(random.randint(2, 5)).iterrows():
- img_name = '../usb/data/png/%s/%s_%s.png' % (card_info['set'], card_info['collector_number'],
+ img_name = '%s/card_img/png/%s/%s_%s.png' % (data_dir, card_info['set'], card_info['collector_number'],
fetch_data.get_valid_filename(card_info['name']))
out_name += '%s%s_' % (card_info['set'], card_info['collector_number'])
card_img = cv2.imread(img_name)
if card_img is None:
- fetch_data.fetch_card_image(card_info, out_dir='../usb/data/png/%s' % card_info['set'])
+ fetch_data.fetch_card_image(card_info, out_dir='%s/card_img/png/%s' % (data_dir, card_info['set']))
card_img = cv2.imread(img_name)
if card_img is None:
print('WARNING: card %s is not found!' % img_name)
@@ -474,51 +488,27 @@
card = Card(card_img, card_info, detected_object_list)
generator.add_card(card)
for j in range(num_iter):
- generator.generate_non_obstructive()
- #generator.generate_horizontal_span()
- generator.export_training_data(visibility=0.0, out_name=out_name + str(j))
+ seq = iaa.Sequential([
+ iaa.Multiply((0.8, 1.2)), # darken / brighten the whole image
+ iaa.SimplexNoiseAlpha(first=iaa.Add(random.randrange(64)), per_channel=0.1, size_px_max=[3, 6],
+ upscale_method="cubic"), # Lighting
+ iaa.AdditiveGaussianNoise(scale=random.uniform(0.005, 0.05) * 255, per_channel=0.1), # Noises
+ iaa.Dropout(p=[0.005, 0.05], per_channel=0.1)
+ ])
+ if i % 3 == 0:
+ generator.generate_non_obstructive()
+ generator.export_training_data(visibility=0.0, out_name='%s/train/non_obstructive/%s_%d'
+ % (data_dir, out_name, j), aug=seq)
+ elif i % 3 == 1:
+ generator.generate_horizontal_span(theta=random.uniform(-math.pi, math.pi))
+ generator.export_training_data(visibility=0.0, out_name='%s/train/horizontal_span/%s_%d'
+ % (data_dir, out_name, j), aug=seq)
+ else:
+ generator.generate_vertical_span(theta=random.uniform(-math.pi, math.pi))
+ generator.export_training_data(visibility=0.0, out_name='%s/train/vertical_span/%s_%d'
+ % (data_dir, out_name, j), aug=seq)
print('Generated %s%d' % (out_name, j))
generator.img_bg = background.get_random()
-
- '''
- #img_bg = cv2.imread('data/frilly_0007.jpg')
- #generator = ImageGenerator(img_bg, 1440, 960)
- card_pool = pd.DataFrame()
- for set_name in fetch_data.all_set_list:
- df = fetch_data.load_all_cards_text('data/csv/%s.csv' % set_name)
- card_info = df.iloc[random.randint(0, df.shape[0] - 1)]
- # Currently ignoring planeswalker cards due to their different card layout
- is_planeswalker = 'Planeswalker' in card_info['type_line']
- if not is_planeswalker:
- card_pool = card_pool.append(card_info)
- for i in [random.randrange(0, card_pool.shape[0] - 1, 1) for _ in range(4)]:
- card_info = card_pool.iloc[i]
- img_name = '../usb/data/png/%s/%s_%s.png' % (card_info['set'], card_info['collector_number'],
- fetch_data.get_valid_filename(card_info['name']))
- print(img_name)
- card_img = cv2.imread(img_name)
- if card_img is None:
- fetch_data.fetch_card_image(card_info, out_dir='../usb/data/png/%s' % card_info['set'])
- card_img = cv2.imread(img_name)
- detected_object_list = generate_data.apply_bounding_box(card_img, card_info)
- card = Card(card_img, card_info, detected_object_list)
-
- generator.add_card(card)
- #generator.add_card(card, x=random.uniform(200, generator.width - 200),
- # y=random.uniform(200, generator.height - 200), theta=random.uniform(-math.pi, math.pi), scale=0.5)
- #card.shift([-100, 100], [-100, 100])
- #card.rotate((0, 0), [-math.pi / 4, math.pi / 4])
- import time
-
- for i in range(100):
- generator.generate_vertical_span()
- generator.render(debug=False)
- generator.export_training_data(out_name='data/test')
- #generator.generate_horizontal_span()
- #generator.render(debug=True)
- #generator.generate_vertical_span()
- #generator.render(debug=True)
- '''
pass
--
Gitblit v1.10.0