From 6d56c38e8bcb9041335b03f27c192c24dfaedb1c Mon Sep 17 00:00:00 2001
From: AlexeyAB <alexeyab84@gmail.com>
Date: Wed, 28 Mar 2018 23:39:28 +0000
Subject: [PATCH] Merge branch 'master' of github.com:AlexeyAB/darknet

---
 src/network.h |  127 ++++++++++++++++++++++++++++++++---------
 1 files changed, 98 insertions(+), 29 deletions(-)

diff --git a/src/network.h b/src/network.h
index 7625904..d7f86c1 100644
--- a/src/network.h
+++ b/src/network.h
@@ -2,59 +2,119 @@
 #ifndef NETWORK_H
 #define NETWORK_H
 
-#include "opencl.h"
+#include <stdint.h>
+#include "layer.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
 #include "image.h"
 #include "data.h"
+#include "tree.h"
 
 typedef enum {
-    CONVOLUTIONAL,
-    CONNECTED,
-    MAXPOOL,
-    SOFTMAX,
-    NORMALIZATION,
-    DROPOUT,
-    FREEWEIGHT,
-    CROP,
-    COST
-} LAYER_TYPE;
+    CONSTANT, STEP, EXP, POLY, STEPS, SIG, RANDOM
+} learning_rate_policy;
 
-typedef struct {
+typedef struct network{
+    float *workspace;
     int n;
     int batch;
-    float learning_rate;
+	int *seen;
+    float epoch;
+    int subdivisions;
     float momentum;
     float decay;
-    void **layers;
-    LAYER_TYPE *types;
+    layer *layers;
     int outputs;
     float *output;
+    learning_rate_policy policy;
+
+    float learning_rate;
+    float gamma;
+    float scale;
+    float power;
+    int time_steps;
+    int step;
+    int max_batches;
+    float *scales;
+    int   *steps;
+    int num_steps;
+    int burn_in;
+
+    int adam;
+    float B1;
+    float B2;
+    float eps;
+
+    int inputs;
+    int h, w, c;
+    int max_crop;
+    int min_crop;
+    float angle;
+    float aspect;
+    float exposure;
+    float saturation;
+    float hue;
+
+    int gpu_index;
+    tree *hierarchy;
 
     #ifdef GPU
-    cl_mem *input_cl;
-    cl_mem *truth_cl;
+    float **input_gpu;
+    float **truth_gpu;
+	float **input16_gpu;
+	float **output16_gpu;
+	size_t *max_input16_size;
+	size_t *max_output16_size;
+	int wait_stream;
     #endif
 } network;
 
+typedef struct network_state {
+    float *truth;
+    float *input;
+    float *delta;
+    float *workspace;
+    int train;
+    int index;
+    network net;
+} network_state;
+
 #ifdef GPU
-void forward_network_gpu(network net, cl_mem input, cl_mem truth, int train);
-void backward_network_gpu(network net, cl_mem input);
+float train_networks(network *nets, int n, data d, int interval);
+void sync_nets(network *nets, int n, int interval);
+float train_network_datum_gpu(network net, float *x, float *y);
+float *network_predict_gpu(network net, float *input);
+float * get_network_output_gpu_layer(network net, int i);
+float * get_network_delta_gpu_layer(network net, int i);
+float *get_network_output_gpu(network net);
+void forward_network_gpu(network net, network_state state);
+void backward_network_gpu(network net, network_state state);
 void update_network_gpu(network net);
-cl_mem get_network_output_cl_layer(network net, int i);
-cl_mem get_network_delta_cl_layer(network net, int i);
-float train_network_sgd_gpu(network net, data d, int n);
-float train_network_data_gpu(network net, data d, int n);
 #endif
 
-network make_network(int n, int batch);
-void forward_network(network net, float *input, float *truth, int train);
-void backward_network(network net, float *input);
+float get_current_rate(network net);
+int get_current_batch(network net);
+void free_network(network net);
+void compare_networks(network n1, network n2, data d);
+char *get_layer_string(LAYER_TYPE a);
+
+network make_network(int n);
+void forward_network(network net, network_state state);
+void backward_network(network net, network_state state);
 void update_network(network net);
-float train_network_sgd(network net, data d, int n);
+
+float train_network(network net, data d);
 float train_network_batch(network net, data d, int n);
-void train_network(network net, data d);
+float train_network_sgd(network net, data d, int n);
+float train_network_datum(network net, float *x, float *y);
+
 matrix network_predict_data(network net, data test);
 float *network_predict(network net, float *input);
 float network_accuracy(network net, data d);
+float *network_accuracies(network net, data d, int n);
 float network_accuracy_multi(network net, data d, int n);
 void top_predictions(network net, int n, int *index);
 float *get_network_output(network net);
@@ -68,9 +128,18 @@
 int get_predicted_class_network(network net);
 void print_network(network net);
 void visualize_network(network net);
-int resize_network(network net, int h, int w, int c);
+int resize_network(network *net, int w, int h);
+void set_batch_network(network *net, int b);
 int get_network_input_size(network net);
 float get_network_cost(network net);
+detection *get_network_boxes(network *net, int w, int h, float thresh, float hier, int *map, int relative, int *num, int letter);
+
+int get_network_nuisance(network net);
+int get_network_background(network net);
+
+#ifdef __cplusplus
+}
+#endif
 
 #endif
 

--
Gitblit v1.10.0