From 6e1d5b45de988bb795c4c505f22f2170a78b7746 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Tue, 20 Jan 2015 06:06:18 +0000
Subject: [PATCH] fast sort of working

---
 src/convolutional_layer.c |  163 ++++++++++++++++++++++++++---------------------------
 1 files changed, 80 insertions(+), 83 deletions(-)

diff --git a/src/convolutional_layer.c b/src/convolutional_layer.c
index 42f4f21..4e8c44b 100644
--- a/src/convolutional_layer.c
+++ b/src/convolutional_layer.c
@@ -59,34 +59,31 @@
 
     layer->filters = calloc(c*n*size*size, sizeof(float));
     layer->filter_updates = calloc(c*n*size*size, sizeof(float));
-    layer->filter_momentum = calloc(c*n*size*size, sizeof(float));
 
     layer->biases = calloc(n, sizeof(float));
     layer->bias_updates = calloc(n, sizeof(float));
-    layer->bias_momentum = calloc(n, sizeof(float));
-    float scale = 1./(size*size*c);
-    scale = .05;
-    for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = scale*2*(rand_uniform()-.5);
+    float scale = 1./sqrt(size*size*c);
+    //scale = .05;
+    for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = scale*rand_normal();
     for(i = 0; i < n; ++i){
         //layer->biases[i] = rand_normal()*scale + scale;
-        layer->biases[i] = .5;
+        layer->biases[i] = scale;
     }
     int out_h = convolutional_out_height(*layer);
     int out_w = convolutional_out_width(*layer);
 
-    layer->col_image = calloc(layer->batch*out_h*out_w*size*size*c, sizeof(float));
+    layer->col_image = calloc(out_h*out_w*size*size*c, sizeof(float));
     layer->output = calloc(layer->batch*out_h * out_w * n, sizeof(float));
     layer->delta  = calloc(layer->batch*out_h * out_w * n, sizeof(float));
+
     #ifdef GPU
     layer->filters_cl = cl_make_array(layer->filters, c*n*size*size);
     layer->filter_updates_cl = cl_make_array(layer->filter_updates, c*n*size*size);
-    layer->filter_momentum_cl = cl_make_array(layer->filter_momentum, c*n*size*size);
 
     layer->biases_cl = cl_make_array(layer->biases, n);
     layer->bias_updates_cl = cl_make_array(layer->bias_updates, n);
-    layer->bias_momentum_cl = cl_make_array(layer->bias_momentum, n);
 
-    layer->col_image_cl = cl_make_array(layer->col_image, layer->batch*out_h*out_w*size*size*c);
+    layer->col_image_cl = cl_make_array(layer->col_image, out_h*out_w*size*size*c);
     layer->delta_cl = cl_make_array(layer->delta, layer->batch*out_h*out_w*n);
     layer->output_cl = cl_make_array(layer->output, layer->batch*out_h*out_w*n);
     #endif
@@ -106,7 +103,7 @@
     int out_w = convolutional_out_width(*layer);
 
     layer->col_image = realloc(layer->col_image,
-                                layer->batch*out_h*out_w*layer->size*layer->size*layer->c*sizeof(float));
+                                out_h*out_w*layer->size*layer->size*layer->c*sizeof(float));
     layer->output = realloc(layer->output,
                                 layer->batch*out_h * out_w * layer->n*sizeof(float));
     layer->delta  = realloc(layer->delta,
@@ -143,13 +140,13 @@
     float *b = layer.col_image;
     float *c = layer.output;
 
-    im2col_cpu(in, layer.batch, layer.c, layer.h, layer.w, 
-        layer.size, layer.stride, layer.pad, b);
 
     for(i = 0; i < layer.batch; ++i){
+        im2col_cpu(in, layer.c, layer.h, layer.w, 
+            layer.size, layer.stride, layer.pad, b);
         gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
-        b += k*n;
         c += n*m;
+        in += layer.c*layer.h*layer.w;
     }
     activate_array(layer.output, m*n*layer.batch, layer.activation);
 }
@@ -166,45 +163,40 @@
     }
 }
 
-void backward_convolutional_layer(convolutional_layer layer, float *delta)
+void backward_convolutional_layer(convolutional_layer layer, float *in, float *delta)
 {
     int i;
     int m = layer.n;
     int n = layer.size*layer.size*layer.c;
     int k = convolutional_out_height(layer)*
         convolutional_out_width(layer);
+
     gradient_array(layer.output, m*k*layer.batch, layer.activation, layer.delta);
+
     learn_bias_convolutional_layer(layer);
 
-    float *a = layer.delta;
-    float *b = layer.col_image;
-    float *c = layer.filter_updates;
+    if(delta) memset(delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
 
     for(i = 0; i < layer.batch; ++i){
+        float *a = layer.delta + i*m*k;
+        float *b = layer.col_image;
+        float *c = layer.filter_updates;
+
+        float *im = in+i*layer.c*layer.h*layer.w;
+
+        im2col_cpu(im, layer.c, layer.h, layer.w, 
+                layer.size, layer.stride, layer.pad, b);
         gemm(0,1,m,n,k,1,a,k,b,k,1,c,n);
-        a += m*k;
-        b += k*n;
-    }
 
-    if(delta){
-        m = layer.size*layer.size*layer.c;
-        k = layer.n;
-        n = convolutional_out_height(layer)*
-            convolutional_out_width(layer);
+        if(delta){
+            a = layer.filters;
+            b = layer.delta + i*m*k;
+            c = layer.col_image;
 
-        a = layer.filters;
-        b = layer.delta;
-        c = layer.col_image;
+            gemm(1,0,n,k,m,1,a,n,b,k,0,c,k);
 
-        for(i = 0; i < layer.batch; ++i){
-            gemm(1,0,m,n,k,1,a,m,b,n,0,c,n);
-            b += k*n;
-            c += m*n;
+            col2im_cpu(layer.col_image, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, delta+i*layer.c*layer.h*layer.w);
         }
-
-        memset(delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
-
-        col2im_cpu(layer.col_image, layer.batch, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, delta);
     }
 }
 
@@ -214,7 +206,7 @@
     axpy_cpu(layer.n, layer.learning_rate, layer.bias_updates, 1, layer.biases, 1);
     scal_cpu(layer.n, layer.momentum, layer.bias_updates, 1);
 
-    scal_cpu(size, 1.-layer.learning_rate*layer.decay, layer.filters, 1);
+    axpy_cpu(size, -layer.decay, layer.filters, 1, layer.filter_updates, 1);
     axpy_cpu(size, layer.learning_rate, layer.filter_updates, 1, layer.filters, 1);
     scal_cpu(size, layer.momentum, layer.filter_updates, 1);
 }
@@ -274,13 +266,18 @@
 }
 
 #ifdef GPU
+#define BLOCK 32
+
+#define STR_HELPER(x) #x
+#define STR(x) STR_HELPER(x)
+
 
 cl_kernel get_convolutional_learn_bias_kernel()
 {
     static int init = 0;
     static cl_kernel kernel;
     if(!init){
-        kernel = get_kernel("src/convolutional_layer.cl", "learn_bias", 0);
+        kernel = get_kernel("src/convolutional_layer.cl", "learn_bias", "-D BLOCK=" STR(BLOCK));
         init = 1;
     }
     return kernel;
@@ -290,7 +287,6 @@
 {
     int size = convolutional_out_height(layer) * convolutional_out_width(layer);
 
-    cl_setup();
     cl_kernel kernel = get_convolutional_learn_bias_kernel();
     cl_command_queue queue = cl.queue;
 
@@ -302,18 +298,40 @@
     cl.error = clSetKernelArg(kernel, i++, sizeof(layer.bias_updates_cl), (void*) &layer.bias_updates_cl);
     check_error(cl);
 
-    const size_t global_size[] = {layer.n};
+    const size_t global_size[] = {layer.n*BLOCK};
+    const size_t local_size[] = {BLOCK};
 
-    clEnqueueNDRangeKernel(queue, kernel, 1, 0, global_size, 0, 0, 0, 0);
+    cl.error = clEnqueueNDRangeKernel(queue, kernel, 1, 0, global_size, local_size, 0, 0, 0);
     check_error(cl);
 }
 
+void test_learn_bias(convolutional_layer l)
+{
+    int i;
+    int size = convolutional_out_height(l) * convolutional_out_width(l);
+    for(i = 0; i < size*l.batch*l.n; ++i){
+        l.delta[i] = rand_uniform();
+    }
+    for(i = 0; i < l.n; ++i){
+        l.bias_updates[i] = rand_uniform();
+    }
+    cl_write_array(l.delta_cl, l.delta, size*l.batch*l.n);
+    cl_write_array(l.bias_updates_cl, l.bias_updates, l.n);
+    float *gpu = calloc(l.n, sizeof(float));
+    cl_read_array(l.bias_updates_cl, gpu, l.n);
+    for(i = 0; i < l.n; ++i) printf("%.9g %.9g\n", l.bias_updates[i], gpu[i]);
+    learn_bias_convolutional_layer_ongpu(l);
+    learn_bias_convolutional_layer(l);
+    cl_read_array(l.bias_updates_cl, gpu, l.n);
+    for(i = 0; i < l.n; ++i) printf("%.9g %.9g\n", l.bias_updates[i], gpu[i]);
+}
+
 cl_kernel get_convolutional_bias_kernel()
 {
     static int init = 0;
     static cl_kernel kernel;
     if(!init){
-        kernel = get_kernel("src/convolutional_layer.cl", "bias", 0);
+        kernel = get_kernel("src/convolutional_layer.cl", "bias", "-D BLOCK=" STR(BLOCK));
         init = 1;
     }
     return kernel;
@@ -325,7 +343,6 @@
     int out_w = convolutional_out_width(layer);
     int size = out_h*out_w;
 
-    cl_setup();
     cl_kernel kernel = get_convolutional_bias_kernel();
     cl_command_queue queue = cl.queue;
 
@@ -336,9 +353,9 @@
     cl.error = clSetKernelArg(kernel, i++, sizeof(layer.output_cl), (void*) &layer.output_cl);
     check_error(cl);
 
-    const size_t global_size[] = {layer.batch, layer.n*size};
+    const size_t global_size[] = {layer.n*size, layer.batch};
 
-    clEnqueueNDRangeKernel(queue, kernel, 2, 0, global_size, 0, 0, 0, 0);
+    cl.error = clEnqueueNDRangeKernel(queue, kernel, 2, 0, global_size, 0, 0, 0, 0);
     check_error(cl);
 }
 
@@ -354,36 +371,17 @@
 
     bias_output_gpu(layer);
 
-    #ifdef TIMEIT
-    clock_t time = clock();
-    printf("Forward\n");
-    #endif
-
-    im2col_ongpu(in, layer.batch, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, layer.col_image_cl);
-
-    #ifdef TIMEIT
-    clFinish(cl.queue);
-    printf("Im2col %f\n", sec(clock()-time));
-    time = clock();
-    #endif
-
     for(i = 0; i < layer.batch; ++i){
+        im2col_ongpu(in, i*layer.c*layer.h*layer.w, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, layer.col_image_cl);
         cl_mem a = layer.filters_cl;
         cl_mem b = layer.col_image_cl;
         cl_mem c = layer.output_cl;
-        gemm_ongpu_offset(0,0,m,n,k,1.,a,0,k,b,i*k*n,n,1.,c,i*m*n,n);
+        gemm_ongpu_offset(0,0,m,n,k,1.,a,0,k,b,0,n,1.,c,i*m*n,n);
     }
-    #ifdef TIMEIT
-    clFinish(cl.queue);
-    printf("Gemm %f\n", sec(clock()-time));
-    #endif
     activate_array_ongpu(layer.output_cl, m*n*layer.batch, layer.activation);
-    #ifdef TIMEIT
-    cl_read_array(layer.output_cl, layer.output, m*n*layer.batch);
-    #endif
 }
 
-void backward_convolutional_layer_gpu(convolutional_layer layer, cl_mem delta_cl)
+void backward_convolutional_layer_gpu(convolutional_layer layer, cl_mem in, cl_mem delta_cl)
 {
     int i;
     int m = layer.n;
@@ -393,31 +391,26 @@
     gradient_array_ongpu(layer.output_cl, m*k*layer.batch, layer.activation, layer.delta_cl);
     learn_bias_convolutional_layer_ongpu(layer);
 
+    if(delta_cl) scal_ongpu(layer.batch*layer.h*layer.w*layer.c, 0, delta_cl, 1);
+
     for(i = 0; i < layer.batch; ++i){
         cl_mem a = layer.delta_cl;
         cl_mem b = layer.col_image_cl;
         cl_mem c = layer.filter_updates_cl;
 
-        gemm_ongpu_offset(0,1,m,n,k,1,a,i*m*k,k,b,i*k*n,k,1,c,0,n);
-    }
-    //cl_read_array(layer.delta_cl, layer.delta, m*k*layer.batch);
+        im2col_ongpu(in, i*layer.c*layer.h*layer.w, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, layer.col_image_cl);
+        gemm_ongpu_offset(0,1,m,n,k,1,a,i*m*k,k,b,0,k,1,c,0,n);
 
-    if(delta_cl){
-        m = layer.size*layer.size*layer.c;
-        k = layer.n;
-        n = convolutional_out_height(layer)*
-            convolutional_out_width(layer);
+        if(delta_cl){
 
-        for(i = 0; i < layer.batch; ++i){
             cl_mem a = layer.filters_cl;
             cl_mem b = layer.delta_cl;
             cl_mem c = layer.col_image_cl;
 
-            gemm_ongpu_offset(1,0,m,n,k,1,a,0,m,b,i*k*n,n,0,c,i*m*n,n);
-        }
+            gemm_ongpu_offset(1,0,n,k,m,1,a,0,n,b,i*k*m,k,0,c,0,k);
 
-        scal_ongpu(layer.batch*layer.h*layer.w*layer.c,0,delta_cl, 1);
-        col2im_ongpu(layer.col_image_cl, layer.batch, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, delta_cl);
+            col2im_ongpu(layer.col_image_cl, i*layer.c*layer.h*layer.w, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, delta_cl);
+        }
     }
 }
 
@@ -425,12 +418,16 @@
 {
     cl_read_array(layer.filters_cl, layer.filters, layer.c*layer.n*layer.size*layer.size);
     cl_read_array(layer.biases_cl, layer.biases, layer.n);
+    cl_read_array(layer.filter_updates_cl, layer.filter_updates, layer.c*layer.n*layer.size*layer.size);
+    cl_read_array(layer.bias_updates_cl, layer.bias_updates, layer.n);
 }
 
 void push_convolutional_layer(convolutional_layer layer)
 {
     cl_write_array(layer.filters_cl, layer.filters, layer.c*layer.n*layer.size*layer.size);
     cl_write_array(layer.biases_cl, layer.biases, layer.n);
+    cl_write_array(layer.filter_updates_cl, layer.filter_updates, layer.c*layer.n*layer.size*layer.size);
+    cl_write_array(layer.bias_updates_cl, layer.bias_updates, layer.n);
 }
 
 void update_convolutional_layer_gpu(convolutional_layer layer)
@@ -439,10 +436,10 @@
     axpy_ongpu(layer.n, layer.learning_rate, layer.bias_updates_cl, 1, layer.biases_cl, 1);
     scal_ongpu(layer.n,layer.momentum, layer.bias_updates_cl, 1);
 
-    scal_ongpu(size, 1.-layer.learning_rate*layer.decay, layer.filters_cl, 1);
+    axpy_ongpu(size, -layer.decay, layer.filters_cl, 1, layer.filter_updates_cl, 1);
     axpy_ongpu(size, layer.learning_rate, layer.filter_updates_cl, 1, layer.filters_cl, 1);
     scal_ongpu(size, layer.momentum, layer.filter_updates_cl, 1);
-    pull_convolutional_layer(layer);
+    //pull_convolutional_layer(layer);
 }
 
 

--
Gitblit v1.10.0