From 75db98db253adf7fbde293f102ab095b02402f9e Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Fri, 10 Jul 2015 23:38:30 +0000
Subject: [PATCH] normalization layer
---
src/parser.c | 30 +++++++++++++++++++++++++++---
1 files changed, 27 insertions(+), 3 deletions(-)
diff --git a/src/parser.c b/src/parser.c
index c0db443..3646cf2 100644
--- a/src/parser.c
+++ b/src/parser.c
@@ -7,6 +7,7 @@
#include "crop_layer.h"
#include "cost_layer.h"
#include "convolutional_layer.h"
+#include "normalization_layer.h"
#include "deconvolutional_layer.h"
#include "connected_layer.h"
#include "maxpool_layer.h"
@@ -30,6 +31,7 @@
int is_maxpool(section *s);
int is_dropout(section *s);
int is_softmax(section *s);
+int is_normalization(section *s);
int is_crop(section *s);
int is_cost(section *s);
int is_detection(section *s);
@@ -167,7 +169,7 @@
int rescore = option_find_int(options, "rescore", 0);
int joint = option_find_int(options, "joint", 0);
int objectness = option_find_int(options, "objectness", 0);
- int background = option_find_int(options, "background", 1);
+ int background = option_find_int(options, "background", 0);
detection_layer layer = make_detection_layer(params.batch, params.inputs, classes, coords, joint, rescore, background, objectness);
option_unused(options);
return layer;
@@ -228,6 +230,17 @@
return layer;
}
+layer parse_normalization(list *options, size_params params)
+{
+ float alpha = option_find_float(options, "alpha", .0001);
+ float beta = option_find_float(options, "beta" , .75);
+ float kappa = option_find_float(options, "kappa", 1);
+ int size = option_find_int(options, "size", 5);
+ layer l = make_normalization_layer(params.batch, params.w, params.h, params.c, size, alpha, beta, kappa);
+ option_unused(options);
+ return l;
+}
+
route_layer parse_route(list *options, size_params params, network net)
{
char *l = option_find(options, "layers");
@@ -328,6 +341,8 @@
l = parse_detection(options, params);
}else if(is_softmax(s)){
l = parse_softmax(options, params);
+ }else if(is_normalization(s)){
+ l = parse_normalization(options, params);
}else if(is_maxpool(s)){
l = parse_maxpool(options, params);
}else if(is_route(s)){
@@ -343,6 +358,7 @@
}else{
fprintf(stderr, "Type not recognized: %s\n", s->type);
}
+ l.dontload = option_find_int_quiet(options, "dontload", 0);
net.layers[count] = l;
free_section(s);
n = n->next;
@@ -402,6 +418,12 @@
return (strcmp(s->type, "[dropout]")==0);
}
+int is_normalization(section *s)
+{
+ return (strcmp(s->type, "[lrn]")==0
+ || strcmp(s->type, "[normalization]")==0);
+}
+
int is_softmax(section *s)
{
return (strcmp(s->type, "[soft]")==0
@@ -514,7 +536,8 @@
void load_weights_upto(network *net, char *filename, int cutoff)
{
- fprintf(stderr, "Loading weights from %s\n", filename);
+ fprintf(stderr, "Loading weights from %s...", filename);
+ fflush(stdout);
FILE *fp = fopen(filename, "r");
if(!fp) file_error(filename);
@@ -522,11 +545,11 @@
fread(&net->momentum, sizeof(float), 1, fp);
fread(&net->decay, sizeof(float), 1, fp);
fread(&net->seen, sizeof(int), 1, fp);
- fprintf(stderr, "%f %f %f %d\n", net->learning_rate, net->momentum, net->decay, net->seen);
int i;
for(i = 0; i < net->n && i < cutoff; ++i){
layer l = net->layers[i];
+ if (l.dontload) continue;
if(l.type == CONVOLUTIONAL){
int num = l.n*l.c*l.size*l.size;
fread(l.biases, sizeof(float), l.n, fp);
@@ -557,6 +580,7 @@
#endif
}
}
+ fprintf(stderr, "Done!\n");
fclose(fp);
}
--
Gitblit v1.10.0