From 76ee68f96d864a27312c9aa09856ddda559a5cd9 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Thu, 28 Aug 2014 02:11:46 +0000
Subject: [PATCH] Trying some stuff w/ dropout

---
 src/cnn.c |  115 ++++++++++++++++++++++++++++++++++++++++++++++++++-------
 1 files changed, 101 insertions(+), 14 deletions(-)

diff --git a/src/cnn.c b/src/cnn.c
index f866194..0cd6da3 100644
--- a/src/cnn.c
+++ b/src/cnn.c
@@ -32,6 +32,51 @@
 	show_image_layers(edge, "Test Convolve");
 }
 
+#ifdef GPU
+
+void test_convolutional_layer()
+{
+    int i;
+	image dog = load_image("data/dog.jpg",256,256);
+	network net = parse_network_cfg("cfg/convolutional.cfg");
+//    data test = load_cifar10_data("data/cifar10/test_batch.bin");
+//    float *X = calloc(net.batch*test.X.cols, sizeof(float));
+//    float *y = calloc(net.batch*test.y.cols, sizeof(float));
+    int in_size = get_network_input_size(net)*net.batch;
+    int size = get_network_output_size(net)*net.batch;
+float *X = calloc(in_size, sizeof(float));
+    for(i = 0; i < in_size; ++i){
+        X[i] = dog.data[i%get_network_input_size(net)];
+    }
+//    get_batch(test, net.batch, X, y);
+    clock_t start, end;
+    cl_mem input_cl = cl_make_array(X, in_size);
+
+    forward_network_gpu(net, input_cl, 1);
+    start = clock();
+    forward_network_gpu(net, input_cl, 1);
+    end = clock();
+    float gpu_sec = (float)(end-start)/CLOCKS_PER_SEC;
+    float *gpu_out = calloc(size, sizeof(float));
+    memcpy(gpu_out, get_network_output(net), size*sizeof(float));
+
+    start = clock();
+    forward_network(net, X, 1);
+    end = clock();
+    float cpu_sec = (float)(end-start)/CLOCKS_PER_SEC;
+    float *cpu_out = calloc(size, sizeof(float));
+    memcpy(cpu_out, get_network_output(net), size*sizeof(float));
+
+    float sum = 0;
+    for(i = 0; i < size; ++i) {
+        //printf("%f, %f\n", gpu_out[i], cpu_out[i]);
+        sum += pow(gpu_out[i] - cpu_out[i], 2);
+    }
+    printf("gpu: %f sec, cpu: %f sec, diff: %f, size: %d\n", gpu_sec, cpu_sec, sum, size);
+}
+
+#endif
+
 void test_convolve_matrix()
 {
 	image dog = load_image("dog.jpg",300,400);
@@ -240,9 +285,22 @@
 
 void test_cifar10()
 {
-	srand(222222);
+
+    network net = parse_network_cfg("cfg/cifar10_part5.cfg");
+    data test = load_cifar10_data("data/cifar10/test_batch.bin");
+        clock_t start = clock(), end;
+    float test_acc = network_accuracy(net, test);
+        end = clock();
+    printf("%f in %f Sec\n", test_acc, (float)(end-start)/CLOCKS_PER_SEC);
+    visualize_network(net);
+    cvWaitKey(0);
+}
+
+void train_cifar10()
+{
+    srand(555555);
     network net = parse_network_cfg("cfg/cifar10.cfg");
-    //data test = load_cifar10_data("data/cifar10/test_batch.bin");
+    data test = load_cifar10_data("data/cifar10/test_batch.bin");
     int count = 0;
     int iters = 10000/net.batch;
     data train = load_all_cifar10();
@@ -250,12 +308,20 @@
         clock_t start = clock(), end;
         float loss = train_network_sgd(net, train, iters);
         end = clock();
-        //visualize_network(net);
-        //cvWaitKey(1000);
+        visualize_network(net);
+        cvWaitKey(5000);
 
         //float test_acc = network_accuracy(net, test);
         //printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay);
-        printf("%d: Loss: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, (float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay);
+        if(count%10 == 0){
+            float test_acc = network_accuracy(net, test);
+            printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay);
+            char buff[256];
+            sprintf(buff, "/home/pjreddie/cifar/cifar2_%d.cfg", count);
+            save_network(net, buff);
+        }else{
+            printf("%d: Loss: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, (float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay);
+        }
     }
     free_data(train);
 }
@@ -281,10 +347,10 @@
 void test_nist_single()
 {
     srand(222222);
-    network net = parse_network_cfg("cfg/nist.cfg");
+    network net = parse_network_cfg("cfg/nist_single.cfg");
     data train = load_categorical_data_csv("data/mnist/mnist_tiny.csv", 0, 10);
     normalize_data_rows(train);
-    float loss = train_network_sgd(net, train, 5);
+    float loss = train_network_sgd(net, train, 1);
     printf("Loss: %f, LR: %f, Momentum: %f, Decay: %f\n", loss, net.learning_rate, net.momentum, net.decay);
 
 }
@@ -292,25 +358,43 @@
 void test_nist()
 {
     srand(222222);
+    network net = parse_network_cfg("cfg/nist_final.cfg");
+    data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
+    translate_data_rows(test, -144);
+    clock_t start = clock(), end;
+    float test_acc = network_accuracy_multi(net, test,16);
+    end = clock();
+    printf("Accuracy: %f, Time: %lf seconds\n", test_acc,(float)(end-start)/CLOCKS_PER_SEC);
+}
+
+void train_nist()
+{
+    srand(222222);
     network net = parse_network_cfg("cfg/nist.cfg");
     data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10);
     data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
-	translate_data_rows(train, -144);
-	scale_data_rows(train, 1./128);
-	translate_data_rows(test, -144);
-	scale_data_rows(test, 1./128);
+    translate_data_rows(train, -144);
+    //scale_data_rows(train, 1./128);
+    translate_data_rows(test, -144);
+    //scale_data_rows(test, 1./128);
     //randomize_data(train);
     int count = 0;
     //clock_t start = clock(), end;
     int iters = 10000/net.batch;
-    while(++count <= 100){
+    while(++count <= 2000){
         clock_t start = clock(), end;
         float loss = train_network_sgd(net, train, iters);
         end = clock();
         float test_acc = network_accuracy(net, test);
         //float test_acc = 0;
         printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay);
-        //save_network(net, "cfg/nist_basic_trained.cfg");
+        /*printf("%f %f %f %f %f\n", mean_array(get_network_output_layer(net,0), 100),
+          mean_array(get_network_output_layer(net,1), 100),
+          mean_array(get_network_output_layer(net,2), 100),
+          mean_array(get_network_output_layer(net,3), 100),
+          mean_array(get_network_output_layer(net,4), 100));
+         */
+        //save_network(net, "cfg/nist_final2.cfg");
 
         //printf("%5d Training Loss: %lf, Params: %f %f %f, ",count*1000, loss, lr, momentum, decay);
         //end = clock();
@@ -770,8 +854,11 @@
     //test_split();
     //test_ensemble();
     //test_nist_single();
-    test_nist();
+    //test_nist();
+    train_nist();
+    //test_convolutional_layer();
     //test_cifar10();
+    //train_cifar10();
     //test_vince();
     //test_full();
     //tune_VOC();

--
Gitblit v1.10.0