From 787d5345609459f21fd65d2d8b4fcd55201e21a1 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Mon, 13 Oct 2014 07:31:10 +0000
Subject: [PATCH] Convolutional working on GPU

---
 src/network.c |  178 +++++++++++++++++++++++++++++++++++++++--------------------
 1 files changed, 117 insertions(+), 61 deletions(-)

diff --git a/src/network.c b/src/network.c
index 292bba0..5833166 100644
--- a/src/network.c
+++ b/src/network.c
@@ -8,7 +8,9 @@
 #include "connected_layer.h"
 #include "convolutional_layer.h"
 #include "maxpool_layer.h"
+#include "cost_layer.h"
 #include "normalization_layer.h"
+#include "freeweight_layer.h"
 #include "softmax_layer.h"
 #include "dropout_layer.h"
 
@@ -28,25 +30,20 @@
 }
 
 #ifdef GPU
-void forward_network(network net, float *input, int train)
+void forward_network_gpu(network net, cl_mem input, cl_mem truth, int train)
 {
-    cl_setup();
-    size_t size = get_network_input_size(net);
-    if(!net.input_cl){
-        net.input_cl = clCreateBuffer(cl.context,
-            CL_MEM_READ_WRITE, size*sizeof(float), 0, &cl.error);
-        check_error(cl);
-    }
-    cl_write_array(net.input_cl, input, size);
-    cl_mem input_cl = net.input_cl;
     int i;
     for(i = 0; i < net.n; ++i){
         if(net.types[i] == CONVOLUTIONAL){
             convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-            forward_convolutional_layer_gpu(layer, input_cl);
-            input_cl = layer.output_cl;
-            input = layer.output;
+            forward_convolutional_layer_gpu(layer, input);
+            input = layer.output_cl;
         }
+        else if(net.types[i] == COST){
+            cost_layer layer = *(cost_layer *)net.layers[i];
+            forward_cost_layer_gpu(layer, input, truth);
+        }
+        /*
         else if(net.types[i] == CONNECTED){
             connected_layer layer = *(connected_layer *)net.layers[i];
             forward_connected_layer(layer, input, train);
@@ -72,12 +69,79 @@
             forward_normalization_layer(layer, input);
             input = layer.output;
         }
+        */
     }
 }
 
-#else
+void backward_network_gpu(network net, cl_mem input)
+{
+    int i;
+    cl_mem prev_input;
+    cl_mem prev_delta;
+    for(i = net.n-1; i >= 0; --i){
+        if(i == 0){
+            prev_input = input;
+            prev_delta = 0;
+        }else{
+            prev_input = get_network_output_cl_layer(net, i-1);
+            prev_delta = get_network_delta_cl_layer(net, i-1);
+        }
+        if(net.types[i] == CONVOLUTIONAL){
+            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
+            backward_convolutional_layer_gpu(layer, prev_delta);
+        }
+        else if(net.types[i] == COST){
+            cost_layer layer = *(cost_layer *)net.layers[i];
+            backward_cost_layer_gpu(layer, prev_input, prev_delta);
+        }
+    }
+}
 
-void forward_network(network net, float *input, int train)
+void update_network_gpu(network net)
+{
+    int i;
+    for(i = 0; i < net.n; ++i){
+        if(net.types[i] == CONVOLUTIONAL){
+            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
+            update_convolutional_layer_gpu(layer);
+        }
+        else if(net.types[i] == MAXPOOL){
+            //maxpool_layer layer = *(maxpool_layer *)net.layers[i];
+        }
+        else if(net.types[i] == SOFTMAX){
+            //maxpool_layer layer = *(maxpool_layer *)net.layers[i];
+        }
+        else if(net.types[i] == NORMALIZATION){
+            //maxpool_layer layer = *(maxpool_layer *)net.layers[i];
+        }
+        else if(net.types[i] == CONNECTED){
+            connected_layer layer = *(connected_layer *)net.layers[i];
+            update_connected_layer(layer);
+        }
+    }
+}
+
+cl_mem get_network_output_cl_layer(network net, int i)
+{
+    if(net.types[i] == CONVOLUTIONAL){
+        convolutional_layer layer = *(convolutional_layer *)net.layers[i];
+        return layer.output_cl;
+    }
+    return 0;
+}
+
+cl_mem get_network_delta_cl_layer(network net, int i)
+{
+    if(net.types[i] == CONVOLUTIONAL){
+        convolutional_layer layer = *(convolutional_layer *)net.layers[i];
+        return layer.delta_cl;
+    }
+    return 0;
+}
+
+#endif
+
+void forward_network(network net, float *input, float *truth, int train)
 {
     int i;
     for(i = 0; i < net.n; ++i){
@@ -96,6 +160,10 @@
             forward_crop_layer(layer, input);
             input = layer.output;
         }
+        else if(net.types[i] == COST){
+            cost_layer layer = *(cost_layer *)net.layers[i];
+            forward_cost_layer(layer, input, truth);
+        }
         else if(net.types[i] == SOFTMAX){
             softmax_layer layer = *(softmax_layer *)net.layers[i];
             forward_softmax_layer(layer, input);
@@ -116,9 +184,13 @@
             dropout_layer layer = *(dropout_layer *)net.layers[i];
             forward_dropout_layer(layer, input);
         }
+        else if(net.types[i] == FREEWEIGHT){
+            if(!train) continue;
+            freeweight_layer layer = *(freeweight_layer *)net.layers[i];
+            forward_freeweight_layer(layer, input);
+        }
     }
 }
-#endif
 
 void update_network(network net)
 {
@@ -168,7 +240,9 @@
 }
 float *get_network_output(network net)
 {
-    return get_network_output_layer(net, net.n-1);
+    int i;
+    for(i = net.n-1; i > 0; --i) if(net.types[i] != COST) break;
+    return get_network_output_layer(net, i);
 }
 
 float *get_network_delta_layer(network net, int i)
@@ -191,6 +265,14 @@
     return 0;
 }
 
+float get_network_cost(network net)
+{
+    if(net.types[net.n-1] == COST){
+        return ((cost_layer *)net.layers[net.n-1])->output[0];
+    }
+    return 0;
+}
+
 float *get_network_delta(network net)
 {
     return get_network_delta_layer(net, net.n-1);
@@ -221,9 +303,8 @@
     return max_index(out, k);
 }
 
-float backward_network(network net, float *input, float *truth)
+void backward_network(network net, float *input)
 {
-    float error = calculate_error_network(net, truth);
     int i;
     float *prev_input;
     float *prev_delta;
@@ -255,15 +336,19 @@
             connected_layer layer = *(connected_layer *)net.layers[i];
             backward_connected_layer(layer, prev_input, prev_delta);
         }
+        else if(net.types[i] == COST){
+            cost_layer layer = *(cost_layer *)net.layers[i];
+            backward_cost_layer(layer, prev_input, prev_delta);
+        }
     }
-    return error;
 }
 
 float train_network_datum(network net, float *x, float *y)
 {
-    forward_network(net, x, 1);
+    forward_network(net, x, y, 1);
     //int class = get_predicted_class_network(net);
-    float error = backward_network(net, x, y);
+    backward_network(net, x);
+    float error = get_network_cost(net);
     update_network(net);
     //return (y[class]?1:0);
     return error;
@@ -275,45 +360,13 @@
     float *X = calloc(batch*d.X.cols, sizeof(float));
     float *y = calloc(batch*d.y.cols, sizeof(float));
 
-    int i,j;
+    int i;
     float sum = 0;
-    int index = 0;
     for(i = 0; i < n; ++i){
-        for(j = 0; j < batch; ++j){
-            index = rand()%d.X.rows;
-            memcpy(X+j*d.X.cols, d.X.vals[index], d.X.cols*sizeof(float));
-            memcpy(y+j*d.y.cols, d.y.vals[index], d.y.cols*sizeof(float));
-        }
-
+        get_batch(d, batch, X, y);
         float err = train_network_datum(net, X, y);
         sum += err;
-        //train_network_datum(net, X, y);
-        /*
-        float *y = d.y.vals[index];
-        int class = get_predicted_class_network(net);
-        correct += (y[class]?1:0);
-        */
-
-/*
-        for(j = 0; j < d.y.cols*batch; ++j){
-            printf("%6.3f ", y[j]);
-        }
-        printf("\n");
-        for(j = 0; j < d.y.cols*batch; ++j){
-            printf("%6.3f ", get_network_output(net)[j]);
-        }
-        printf("\n");
-        printf("\n");
-        */
-
-
-        //printf("%d %f %f\n", i,net.output[0], d.y.vals[index][0]);
-        //if((i+1)%10 == 0){
-        //    printf("%d: %f\n", (i+1), (float)correct/(i+1));
-        //}
     }
-    //printf("Accuracy: %f\n",(float) correct/n);
-    //show_image(float_to_image(32,32,3,X), "Orig");
     free(X);
     free(y);
     return (float)sum/(n*batch);
@@ -328,8 +381,9 @@
             int index = rand()%d.X.rows;
             float *x = d.X.vals[index];
             float *y = d.y.vals[index];
-            forward_network(net, x, 1);
-            sum += backward_network(net, x, y);
+            forward_network(net, x, y, 1);
+            backward_network(net, x);
+            sum += get_network_cost(net);
         }
         update_network(net);
     }
@@ -392,7 +446,8 @@
     else if(net.types[i] == CONNECTED){
         connected_layer layer = *(connected_layer *)net.layers[i];
         return layer.outputs;
-    } else if(net.types[i] == DROPOUT){
+    }
+    else if(net.types[i] == DROPOUT){
         dropout_layer layer = *(dropout_layer *) net.layers[i];
         return layer.inputs;
     }
@@ -437,7 +492,8 @@
 
 int get_network_output_size(network net)
 {
-    int i = net.n-1;
+    int i;
+    for(i = net.n-1; i > 0; --i) if(net.types[i] != COST) break;
     return get_network_output_size_layer(net, i);
 }
 
@@ -498,7 +554,7 @@
 
 float *network_predict(network net, float *input)
 {
-    forward_network(net, input, 0);
+    forward_network(net, input, 0, 0);
     float *out = get_network_output(net);
     return out;
 }

--
Gitblit v1.10.0