From 796e464d43274415603e6f27a4bb81b6c1ef8cf3 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Fri, 24 Jan 2014 22:49:02 +0000
Subject: [PATCH] Connected layers use matrices

---
 src/connected_layer.c |  109 ++++++++++++++++++++++++++++++++++++++----------------
 1 files changed, 77 insertions(+), 32 deletions(-)

diff --git a/src/connected_layer.c b/src/connected_layer.c
index 0344c71..6871b2e 100644
--- a/src/connected_layer.c
+++ b/src/connected_layer.c
@@ -1,5 +1,6 @@
 #include "connected_layer.h"
 #include "utils.h"
+#include "mini_blas.h"
 
 #include <math.h>
 #include <stdio.h>
@@ -35,55 +36,99 @@
     return layer;
 }
 
+void update_connected_layer(connected_layer layer, double step, double momentum, double decay)
+{
+    int i;
+    for(i = 0; i < layer.outputs; ++i){
+        layer.bias_momentum[i] = step*(layer.bias_updates[i]) + momentum*layer.bias_momentum[i];
+        layer.biases[i] += layer.bias_momentum[i];
+    }
+    for(i = 0; i < layer.outputs*layer.inputs; ++i){
+        layer.weight_momentum[i] = step*(layer.weight_updates[i] - decay*layer.weights[i]) + momentum*layer.weight_momentum[i];
+        layer.weights[i] += layer.weight_momentum[i];
+    }
+    memset(layer.bias_updates, 0, layer.outputs*sizeof(double));
+    memset(layer.weight_updates, 0, layer.outputs*layer.inputs*sizeof(double));
+}
+
 void forward_connected_layer(connected_layer layer, double *input)
 {
-    int i, j;
+    int i;
+    memcpy(layer.output, layer.biases, layer.outputs*sizeof(double));
+    int m = 1;
+    int k = layer.inputs;
+    int n = layer.outputs;
+    double *a = input;
+    double *b = layer.weights;
+    double *c = layer.output;
+    gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
     for(i = 0; i < layer.outputs; ++i){
-        layer.output[i] = layer.biases[i];
-        for(j = 0; j < layer.inputs; ++j){
-            layer.output[i] += input[j]*layer.weights[i*layer.inputs + j];
-        }
         layer.output[i] = activate(layer.output[i], layer.activation);
     }
 }
 
 void learn_connected_layer(connected_layer layer, double *input)
 {
-    int i, j;
+    int i;
     for(i = 0; i < layer.outputs; ++i){
         layer.delta[i] *= gradient(layer.output[i], layer.activation);
         layer.bias_updates[i] += layer.delta[i];
-        for(j = 0; j < layer.inputs; ++j){
-            layer.weight_updates[i*layer.inputs + j] += layer.delta[i]*input[j];
-        }
     }
-}
-
-void update_connected_layer(connected_layer layer, double step, double momentum, double decay)
-{
-    int i,j;
-    for(i = 0; i < layer.outputs; ++i){
-        layer.bias_momentum[i] = step*(layer.bias_updates[i]) + momentum*layer.bias_momentum[i];
-        layer.biases[i] += layer.bias_momentum[i];
-        for(j = 0; j < layer.inputs; ++j){
-            int index = i*layer.inputs+j;
-            layer.weight_momentum[index] = step*(layer.weight_updates[index] - decay*layer.weights[index]) + momentum*layer.weight_momentum[index];
-            layer.weights[index] += layer.weight_momentum[index];
-        }
-    }
-    memset(layer.bias_updates, 0, layer.outputs*sizeof(double));
-    memset(layer.weight_updates, 0, layer.outputs*layer.inputs*sizeof(double));
+    int m = layer.inputs;
+    int k = 1;
+    int n = layer.outputs;
+    double *a = input;
+    double *b = layer.delta;
+    double *c = layer.weight_updates;
+    gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
 }
 
 void backward_connected_layer(connected_layer layer, double *input, double *delta)
 {
-    int i, j;
+    memset(delta, 0, layer.inputs*sizeof(double));
 
-    for(j = 0; j < layer.inputs; ++j){
-        delta[j] = 0;
-        for(i = 0; i < layer.outputs; ++i){
-            delta[j] += layer.delta[i]*layer.weights[i*layer.inputs + j];
-        }
-    }
+    int m = layer.inputs;
+    int k = layer.outputs;
+    int n = 1;
+
+    double *a = layer.weights;
+    double *b = layer.delta;
+    double *c = delta;
+
+    gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
 }
+/*
+   void forward_connected_layer(connected_layer layer, double *input)
+   {
+   int i, j;
+   for(i = 0; i < layer.outputs; ++i){
+   layer.output[i] = layer.biases[i];
+   for(j = 0; j < layer.inputs; ++j){
+   layer.output[i] += input[j]*layer.weights[i*layer.inputs + j];
+   }
+   layer.output[i] = activate(layer.output[i], layer.activation);
+   }
+   }
+   void learn_connected_layer(connected_layer layer, double *input)
+   {
+   int i, j;
+   for(i = 0; i < layer.outputs; ++i){
+   layer.delta[i] *= gradient(layer.output[i], layer.activation);
+   layer.bias_updates[i] += layer.delta[i];
+   for(j = 0; j < layer.inputs; ++j){
+   layer.weight_updates[i*layer.inputs + j] += layer.delta[i]*input[j];
+   }
+   }
+   }
+   void backward_connected_layer(connected_layer layer, double *input, double *delta)
+   {
+   int i, j;
 
+   for(j = 0; j < layer.inputs; ++j){
+   delta[j] = 0;
+   for(i = 0; i < layer.outputs; ++i){
+   delta[j] += layer.delta[i]*layer.weights[i*layer.inputs + j];
+   }
+   }
+   }
+ */

--
Gitblit v1.10.0