From 796e464d43274415603e6f27a4bb81b6c1ef8cf3 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Fri, 24 Jan 2014 22:49:02 +0000
Subject: [PATCH] Connected layers use matrices
---
src/tests.c | 164 ++++++++++++++++++++++++++++++++++++++++++++++++------
1 files changed, 145 insertions(+), 19 deletions(-)
diff --git a/src/tests.c b/src/tests.c
index d7d9389..ce131e7 100644
--- a/src/tests.c
+++ b/src/tests.c
@@ -7,6 +7,7 @@
#include "data.h"
#include "matrix.h"
#include "utils.h"
+#include "mini_blas.h"
#include <time.h>
#include <stdlib.h>
@@ -28,6 +29,35 @@
show_image_layers(edge, "Test Convolve");
}
+void test_convolve_matrix()
+{
+ image dog = load_image("dog.jpg");
+ printf("dog channels %d\n", dog.c);
+
+ int size = 11;
+ int stride = 1;
+ int n = 40;
+ double *filters = make_random_image(size, size, dog.c*n).data;
+
+ int mw = ((dog.h-size)/stride+1)*((dog.w-size)/stride+1);
+ int mh = (size*size*dog.c);
+ double *matrix = calloc(mh*mw, sizeof(double));
+
+ image edge = make_image((dog.h-size)/stride+1, (dog.w-size)/stride+1, n);
+
+
+ int i;
+ clock_t start = clock(), end;
+ for(i = 0; i < 1000; ++i){
+ im2col_cpu(dog.data, dog.c, dog.h, dog.w, size, stride, matrix);
+ gemm(0,0,n,mw,mh,1,filters,mh,matrix,mw,1,edge.data,mw);
+ }
+ end = clock();
+ printf("Convolutions: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC);
+ show_image_layers(edge, "Test Convolve");
+ cvWaitKey(0);
+}
+
void test_color()
{
image dog = load_image("test_color.png");
@@ -184,9 +214,12 @@
srand(0);
int i = 0;
char *labels[] = {"cat","dog"};
+ double lr = .00001;
+ double momentum = .9;
+ double decay = 0.01;
while(i++ < 1000 || 1){
data train = load_data_image_pathfile_random("train_paths.txt", 1000, labels, 2);
- train_network(net, train, .0005, 0, 0);
+ train_network(net, train, lr, momentum, decay);
free_data(train);
printf("Round %d\n", i);
}
@@ -195,28 +228,74 @@
void test_nist()
{
srand(444444);
- network net = parse_network_cfg("nist.cfg");
+ srand(888888);
+ network net = parse_network_cfg("nist_basic.cfg");
data train = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10);
data test = load_categorical_data_csv("mnist/mnist_test.csv",0,10);
normalize_data_rows(train);
normalize_data_rows(test);
- randomize_data(train);
+ //randomize_data(train);
int count = 0;
double lr = .0005;
- while(++count <= 1){
- double acc = train_network_sgd(net, train, lr, .9, .001);
- printf("Training Accuracy: %lf", acc);
- lr /= 2;
+ double momentum = .9;
+ double decay = 0.01;
+ clock_t start = clock(), end;
+ while(++count <= 1000){
+ double acc = train_network_sgd(net, train, 6400, lr, momentum, decay);
+ printf("%5d Training Loss: %lf, Params: %f %f %f, ",count*100, 1.-acc, lr, momentum, decay);
+ end = clock();
+ printf("Time: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC);
+ start=end;
+ //visualize_network(net);
+ //cvWaitKey(100);
+ //lr /= 2;
+ if(count%5 == 0 && 0){
+ double train_acc = network_accuracy(net, train);
+ fprintf(stderr, "\nTRAIN: %f\n", train_acc);
+ double test_acc = network_accuracy(net, test);
+ fprintf(stderr, "TEST: %f\n\n", test_acc);
+ printf("%d, %f, %f\n", count, train_acc, test_acc);
+ }
}
+}
+
+void test_ensemble()
+{
+ int i;
+ srand(888888);
+ data d = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10);
+ normalize_data_rows(d);
+ data test = load_categorical_data_csv("mnist/mnist_test.csv", 0,10);
+ normalize_data_rows(test);
+ data train = d;
/*
- double train_acc = network_accuracy(net, train);
- fprintf(stderr, "\nTRAIN: %f\n", train_acc);
- double test_acc = network_accuracy(net, test);
- fprintf(stderr, "TEST: %f\n\n", test_acc);
- printf("%d, %f, %f\n", count, train_acc, test_acc);
- */
- //end = clock();
- //printf("Neural Net Learning: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC);
+ data *split = split_data(d, 1, 10);
+ data train = split[0];
+ data test = split[1];
+ */
+ matrix prediction = make_matrix(test.y.rows, test.y.cols);
+ int n = 30;
+ for(i = 0; i < n; ++i){
+ int count = 0;
+ double lr = .0005;
+ double momentum = .9;
+ double decay = .01;
+ network net = parse_network_cfg("nist.cfg");
+ while(++count <= 15){
+ double acc = train_network_sgd(net, train, train.X.rows, lr, momentum, decay);
+ printf("Training Accuracy: %lf Learning Rate: %f Momentum: %f Decay: %f\n", acc, lr, momentum, decay );
+ lr /= 2;
+ }
+ matrix partial = network_predict_data(net, test);
+ double acc = matrix_accuracy(test.y, partial);
+ printf("Model Accuracy: %lf\n", acc);
+ matrix_add_matrix(partial, prediction);
+ acc = matrix_accuracy(test.y, prediction);
+ printf("Current Ensemble Accuracy: %lf\n", acc);
+ free_matrix(partial);
+ }
+ double acc = matrix_accuracy(test.y, prediction);
+ printf("Full Ensemble Accuracy: %lf\n", acc);
}
void test_kernel_update()
@@ -283,16 +362,63 @@
void test_split()
{
data train = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10);
- data *split = cv_split_data(train, 0, 13);
+ data *split = split_data(train, 0, 13);
printf("%d, %d, %d\n", train.X.rows, split[0].X.rows, split[1].X.rows);
}
+double *random_matrix(int rows, int cols)
+{
+ int i, j;
+ double *m = calloc(rows*cols, sizeof(double));
+ for(i = 0; i < rows; ++i){
+ for(j = 0; j < cols; ++j){
+ m[i*cols+j] = (double)rand()/RAND_MAX;
+ }
+ }
+ return m;
+}
+
+void test_blas()
+{
+ int m = 6025, n = 20, k = 11*11*3;
+ double *a = random_matrix(m,k);
+ double *b = random_matrix(k,n);
+ double *c = random_matrix(m,n);
+ int i;
+ for(i = 0; i<1000; ++i){
+ gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
+ }
+}
+
+void test_im2row()
+{
+ int h = 20;
+ int w = 20;
+ int c = 3;
+ int stride = 1;
+ int size = 11;
+ image test = make_random_image(h,w,c);
+ int mc = 1;
+ int mw = ((h-size)/stride+1)*((w-size)/stride+1);
+ int mh = (size*size*c);
+ int msize = mc*mw*mh;
+ double *matrix = calloc(msize, sizeof(double));
+ int i;
+ for(i = 0; i < 1000; ++i){
+ im2col_cpu(test.data, c, h, w, size, stride, matrix);
+ image render = double_to_image(mh, mw, mc, matrix);
+ }
+}
int main()
{
+ //test_blas();
+ test_convolve_matrix();
+// test_im2row();
//test_kernel_update();
- test_split();
- // test_nist();
+ //test_split();
+ //test_ensemble();
+ //test_nist();
//test_full();
//test_random_preprocess();
//test_random_classify();
@@ -307,6 +433,6 @@
//test_convolutional_layer();
//verify_convolutional_layer();
//test_color();
- cvWaitKey(0);
+ //cvWaitKey(0);
return 0;
}
--
Gitblit v1.10.0