From 79fffcce3ce495bd415dc1284224c915d7194d4c Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Thu, 11 Dec 2014 21:15:26 +0000
Subject: [PATCH] Better imagenet distributed training

---
 src/convolutional_layer.c |  555 +++++++++++++++++++++++++++++++++++++------------------
 1 files changed, 371 insertions(+), 184 deletions(-)

diff --git a/src/convolutional_layer.c b/src/convolutional_layer.c
index 6d77700..18d00e6 100644
--- a/src/convolutional_layer.c
+++ b/src/convolutional_layer.c
@@ -1,231 +1,418 @@
 #include "convolutional_layer.h"
 #include "utils.h"
+#include "mini_blas.h"
 #include <stdio.h>
+#include <time.h>
+
+int convolutional_out_height(convolutional_layer layer)
+{
+    int h = layer.h;
+    if (!layer.pad) h -= layer.size;
+    else h -= 1;
+    return h/layer.stride + 1;
+}
+
+int convolutional_out_width(convolutional_layer layer)
+{
+    int w = layer.w;
+    if (!layer.pad) w -= layer.size;
+    else w -= 1;
+    return w/layer.stride + 1;
+}
 
 image get_convolutional_image(convolutional_layer layer)
 {
     int h,w,c;
-    if(layer.edge){
-        h = (layer.h-1)/layer.stride + 1;
-        w = (layer.w-1)/layer.stride + 1;
-    }else{
-        h = (layer.h - layer.size)/layer.stride+1;
-        w = (layer.h - layer.size)/layer.stride+1;
-    }
+    h = convolutional_out_height(layer);
+    w = convolutional_out_width(layer);
     c = layer.n;
-    return double_to_image(h,w,c,layer.output);
+    return float_to_image(h,w,c,layer.output);
 }
 
 image get_convolutional_delta(convolutional_layer layer)
 {
     int h,w,c;
-    if(layer.edge){
-        h = (layer.h-1)/layer.stride + 1;
-        w = (layer.w-1)/layer.stride + 1;
-    }else{
-        h = (layer.h - layer.size)/layer.stride+1;
-        w = (layer.h - layer.size)/layer.stride+1;
-    }
+    h = convolutional_out_height(layer);
+    w = convolutional_out_width(layer);
     c = layer.n;
-    return double_to_image(h,w,c,layer.delta);
+    return float_to_image(h,w,c,layer.delta);
 }
 
-convolutional_layer *make_convolutional_layer(int h, int w, int c, int n, int size, int stride, ACTIVATION activation)
+convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation, float learning_rate, float momentum, float decay)
 {
     int i;
-    int out_h,out_w;
+    size = 2*(size/2)+1; //HA! And you thought you'd use an even sized filter...
     convolutional_layer *layer = calloc(1, sizeof(convolutional_layer));
+
+    layer->learning_rate = learning_rate;
+    layer->momentum = momentum;
+    layer->decay = decay;
+
     layer->h = h;
     layer->w = w;
     layer->c = c;
     layer->n = n;
-    layer->edge = 0;
+    layer->batch = batch;
     layer->stride = stride;
-    layer->kernels = calloc(n, sizeof(image));
-    layer->kernel_updates = calloc(n, sizeof(image));
-    layer->kernel_momentum = calloc(n, sizeof(image));
-    layer->biases = calloc(n, sizeof(double));
-    layer->bias_updates = calloc(n, sizeof(double));
-    layer->bias_momentum = calloc(n, sizeof(double));
-    double scale = 20./(size*size*c);
+    layer->size = size;
+    layer->pad = pad;
+
+    layer->filters = calloc(c*n*size*size, sizeof(float));
+    layer->filter_updates = calloc(c*n*size*size, sizeof(float));
+
+    layer->biases = calloc(n, sizeof(float));
+    layer->bias_updates = calloc(n, sizeof(float));
+    float scale = 1./sqrt(size*size*c);
+    //scale = .05;
+    for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = scale*rand_normal();
     for(i = 0; i < n; ++i){
         //layer->biases[i] = rand_normal()*scale + scale;
-        layer->biases[i] = 1;
-        layer->kernels[i] = make_random_kernel(size, c, scale);
-        layer->kernel_updates[i] = make_random_kernel(size, c, 0);
-        layer->kernel_momentum[i] = make_random_kernel(size, c, 0);
+        layer->biases[i] = scale;
     }
-    layer->size = 2*(size/2)+1;
-    if(layer->edge){
-        out_h = (layer->h-1)/layer->stride + 1;
-        out_w = (layer->w-1)/layer->stride + 1;
-    }else{
-        out_h = (layer->h - layer->size)/layer->stride+1;
-        out_w = (layer->h - layer->size)/layer->stride+1;
-    }
-    printf("Convolutional Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n);
-    layer->output = calloc(out_h * out_w * n, sizeof(double));
-    layer->delta  = calloc(out_h * out_w * n, sizeof(double));
-    layer->upsampled = make_image(h,w,n);
+    int out_h = convolutional_out_height(*layer);
+    int out_w = convolutional_out_width(*layer);
+
+    layer->col_image = calloc(out_h*out_w*size*size*c, sizeof(float));
+    layer->output = calloc(layer->batch*out_h * out_w * n, sizeof(float));
+    layer->delta  = calloc(layer->batch*out_h * out_w * n, sizeof(float));
+
+    #ifdef GPU
+    layer->filters_cl = cl_make_array(layer->filters, c*n*size*size);
+    layer->filter_updates_cl = cl_make_array(layer->filter_updates, c*n*size*size);
+
+    layer->biases_cl = cl_make_array(layer->biases, n);
+    layer->bias_updates_cl = cl_make_array(layer->bias_updates, n);
+
+    layer->col_image_cl = cl_make_array(layer->col_image, out_h*out_w*size*size*c);
+    layer->delta_cl = cl_make_array(layer->delta, layer->batch*out_h*out_w*n);
+    layer->output_cl = cl_make_array(layer->output, layer->batch*out_h*out_w*n);
+    #endif
     layer->activation = activation;
 
+    fprintf(stderr, "Convolutional Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n);
+
     return layer;
 }
 
-void forward_convolutional_layer(const convolutional_layer layer, double *in)
+void resize_convolutional_layer(convolutional_layer *layer, int h, int w, int c)
 {
-    image input = double_to_image(layer.h, layer.w, layer.c, in);
-    image output = get_convolutional_image(layer);
-    int i,j;
-    for(i = 0; i < layer.n; ++i){
-        convolve(input, layer.kernels[i], layer.stride, i, output, layer.edge);
-    }
-    for(i = 0; i < output.c; ++i){
-        for(j = 0; j < output.h*output.w; ++j){
-            int index = i*output.h*output.w + j;
-            output.data[index] += layer.biases[i];
-            output.data[index] = activate(output.data[index], layer.activation);
-        }
-    }
+    layer->h = h;
+    layer->w = w;
+    layer->c = c;
+    int out_h = convolutional_out_height(*layer);
+    int out_w = convolutional_out_width(*layer);
+
+    layer->col_image = realloc(layer->col_image,
+                                out_h*out_w*layer->size*layer->size*layer->c*sizeof(float));
+    layer->output = realloc(layer->output,
+                                layer->batch*out_h * out_w * layer->n*sizeof(float));
+    layer->delta  = realloc(layer->delta,
+                                layer->batch*out_h * out_w * layer->n*sizeof(float));
 }
 
-void backward_convolutional_layer(convolutional_layer layer, double *input, double *delta)
+void bias_output(const convolutional_layer layer)
 {
-    int i;
-
-    image in_delta = double_to_image(layer.h, layer.w, layer.c, delta);
-    image out_delta = get_convolutional_delta(layer);
-    zero_image(in_delta);
-
-    for(i = 0; i < layer.n; ++i){
-        back_convolve(in_delta, layer.kernels[i], layer.stride, i, out_delta, layer.edge);
-    }
-}
-
-void backward_convolutional_layer2(convolutional_layer layer, double *input, double *delta)
-{
-    image in_delta = double_to_image(layer.h, layer.w, layer.c, delta);
-    image out_delta = get_convolutional_delta(layer);
-    int i,j;
-    for(i = 0; i < layer.n; ++i){
-        rotate_image(layer.kernels[i]);
-    }
-
-    zero_image(in_delta);
-    upsample_image(out_delta, layer.stride, layer.upsampled);
-    for(j = 0; j < in_delta.c; ++j){
+    int i,j,b;
+    int out_h = convolutional_out_height(layer);
+    int out_w = convolutional_out_width(layer);
+    for(b = 0; b < layer.batch; ++b){
         for(i = 0; i < layer.n; ++i){
-            two_d_convolve(layer.upsampled, i, layer.kernels[i], j, 1, in_delta, j, layer.edge);
-        }
-    }
-
-    for(i = 0; i < layer.n; ++i){
-        rotate_image(layer.kernels[i]);
-    }
-}
-
-void learn_convolutional_layer(convolutional_layer layer, double *input)
-{
-    int i;
-    image in_image = double_to_image(layer.h, layer.w, layer.c, input);
-    image out_delta = get_convolutional_delta(layer);
-    image out_image = get_convolutional_image(layer);
-    for(i = 0; i < out_image.h*out_image.w*out_image.c; ++i){
-        out_delta.data[i] *= gradient(out_image.data[i], layer.activation);
-    }
-    for(i = 0; i < layer.n; ++i){
-        kernel_update(in_image, layer.kernel_updates[i], layer.stride, i, out_delta, layer.edge);
-        layer.bias_updates[i] += avg_image_layer(out_delta, i);
-        //printf("%30.20lf\n", layer.bias_updates[i]);
-    }
-}
-
-void update_convolutional_layer(convolutional_layer layer, double step, double momentum, double decay)
-{
-    //step = .01;
-    int i,j;
-    for(i = 0; i < layer.n; ++i){
-        layer.bias_momentum[i] = step*(layer.bias_updates[i]) 
-                                + momentum*layer.bias_momentum[i];
-        layer.biases[i] += layer.bias_momentum[i];
-        //layer.biases[i] = constrain(layer.biases[i],1.);
-        layer.bias_updates[i] = 0;
-        int pixels = layer.kernels[i].h*layer.kernels[i].w*layer.kernels[i].c;
-        for(j = 0; j < pixels; ++j){
-            layer.kernel_momentum[i].data[j] = step*(layer.kernel_updates[i].data[j] - decay*layer.kernels[i].data[j]) 
-                                                + momentum*layer.kernel_momentum[i].data[j];
-            layer.kernels[i].data[j] += layer.kernel_momentum[i].data[j];
-            //layer.kernels[i].data[j] = constrain(layer.kernels[i].data[j], 1.);
-        }
-        zero_image(layer.kernel_updates[i]);
-    }
-}
-
-void visualize_convolutional_filters(convolutional_layer layer, char *window)
-{
-    int color = 1;
-    int border = 1;
-    int h,w,c;
-    int size = layer.size;
-    h = size;
-    w = (size + border) * layer.n - border;
-    c = layer.kernels[0].c;
-    if(c != 3 || !color){
-        h = (h+border)*c - border;
-        c = 1;
-    }
-
-    image filters = make_image(h,w,c);
-    int i,j;
-    for(i = 0; i < layer.n; ++i){
-        int w_offset = i*(size+border);
-        image k = layer.kernels[i];
-        image copy = copy_image(k);
-        /*
-        printf("Kernel %d - Bias: %f, Channels:",i,layer.biases[i]);
-        for(j = 0; j < k.c; ++j){
-            double a = avg_image_layer(k, j);
-            printf("%f, ", a);
-        }
-        printf("\n");
-        */
-        normalize_image(copy);
-        for(j = 0; j < k.c; ++j){
-            set_pixel(copy,0,0,j,layer.biases[i]);
-        }
-        if(c == 3 && color){
-            embed_image(copy, filters, 0, w_offset);
-        }
-        else{
-            for(j = 0; j < k.c; ++j){
-                int h_offset = j*(size+border);
-                image layer = get_image_layer(k, j);
-                embed_image(layer, filters, h_offset, w_offset);
-                free_image(layer);
+            for(j = 0; j < out_h*out_w; ++j){
+                layer.output[(b*layer.n + i)*out_h*out_w + j] = layer.biases[i];
             }
         }
-        free_image(copy);
     }
-    image delta = get_convolutional_delta(layer);
-    image dc = collapse_image_layers(delta, 1);
-    char buff[256];
-    sprintf(buff, "%s: Delta", window);
-    show_image(dc, buff);
-    free_image(dc);
-    show_image(filters, window);
-    free_image(filters);
 }
 
-void visualize_convolutional_layer(convolutional_layer layer)
+void forward_convolutional_layer(const convolutional_layer layer, float *in)
 {
+    int out_h = convolutional_out_height(layer);
+    int out_w = convolutional_out_width(layer);
     int i;
-    char buff[256];
-    //image vis = make_image(layer.n*layer.size, layer.size*layer.kernels[0].c, 3);
-    for(i = 0; i < layer.n; ++i){
-        image k = layer.kernels[i];
-        sprintf(buff, "Kernel %d", i);
-        if(k.c <= 3) show_image(k, buff);
-        else show_image_layers(k, buff);
+
+    bias_output(layer);
+
+    int m = layer.n;
+    int k = layer.size*layer.size*layer.c;
+    int n = out_h*out_w;
+
+    float *a = layer.filters;
+    float *b = layer.col_image;
+    float *c = layer.output;
+
+
+    for(i = 0; i < layer.batch; ++i){
+        im2col_cpu(in, layer.c, layer.h, layer.w, 
+            layer.size, layer.stride, layer.pad, b);
+        gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
+        c += n*m;
+        in += layer.c*layer.h*layer.w;
+    }
+    activate_array(layer.output, m*n*layer.batch, layer.activation);
+}
+
+void learn_bias_convolutional_layer(convolutional_layer layer)
+{
+    int i,b;
+    int size = convolutional_out_height(layer)
+        *convolutional_out_width(layer);
+    for(b = 0; b < layer.batch; ++b){
+        for(i = 0; i < layer.n; ++i){
+            layer.bias_updates[i] += sum_array(layer.delta+size*(i+b*layer.n), size);
+        }
     }
 }
 
+void backward_convolutional_layer(convolutional_layer layer, float *in, float *delta)
+{
+    int i;
+    int m = layer.n;
+    int n = layer.size*layer.size*layer.c;
+    int k = convolutional_out_height(layer)*
+        convolutional_out_width(layer);
+    gradient_array(layer.output, m*k*layer.batch, layer.activation, layer.delta);
+    learn_bias_convolutional_layer(layer);
+
+    if(delta) memset(delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
+
+    for(i = 0; i < layer.batch; ++i){
+        float *a = layer.delta + i*m*k;
+        float *b = layer.col_image;
+        float *c = layer.filter_updates;
+
+        float *im = in+i*layer.c*layer.h*layer.w;
+
+        im2col_cpu(im, layer.c, layer.h, layer.w, 
+                layer.size, layer.stride, layer.pad, b);
+        gemm(0,1,m,n,k,1,a,k,b,k,1,c,n);
+
+        if(delta){
+            a = layer.filters;
+            b = layer.delta + i*m*k;
+            c = layer.col_image;
+
+            gemm(1,0,n,k,m,1,a,n,b,k,0,c,k);
+
+            col2im_cpu(layer.col_image, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, delta+i*layer.c*layer.h*layer.w);
+        }
+    }
+}
+
+void update_convolutional_layer(convolutional_layer layer)
+{
+    int size = layer.size*layer.size*layer.c*layer.n;
+    axpy_cpu(layer.n, layer.learning_rate, layer.bias_updates, 1, layer.biases, 1);
+    scal_cpu(layer.n, layer.momentum, layer.bias_updates, 1);
+
+    axpy_cpu(size, -layer.decay, layer.filters, 1, layer.filter_updates, 1);
+    axpy_cpu(size, layer.learning_rate, layer.filter_updates, 1, layer.filters, 1);
+    scal_cpu(size, layer.momentum, layer.filter_updates, 1);
+}
+
+
+image get_convolutional_filter(convolutional_layer layer, int i)
+{
+    int h = layer.size;
+    int w = layer.size;
+    int c = layer.c;
+    return float_to_image(h,w,c,layer.filters+i*h*w*c);
+}
+
+image *weighted_sum_filters(convolutional_layer layer, image *prev_filters)
+{
+    image *filters = calloc(layer.n, sizeof(image));
+    int i,j,k,c;
+    if(!prev_filters){
+        for(i = 0; i < layer.n; ++i){
+            filters[i] = copy_image(get_convolutional_filter(layer, i));
+        }
+    }
+    else{
+        image base = prev_filters[0];
+        for(i = 0; i < layer.n; ++i){
+            image filter = get_convolutional_filter(layer, i);
+            filters[i] = make_image(base.h, base.w, base.c);
+            for(j = 0; j < layer.size; ++j){
+                for(k = 0; k < layer.size; ++k){
+                    for(c = 0; c < layer.c; ++c){
+                        float weight = get_pixel(filter, j, k, c);
+                        image prev_filter = copy_image(prev_filters[c]);
+                        scale_image(prev_filter, weight);
+                        add_into_image(prev_filter, filters[i], 0,0);
+                        free_image(prev_filter);
+                    }
+                }
+            }
+        }
+    }
+    return filters;
+}
+
+image *visualize_convolutional_layer(convolutional_layer layer, char *window, image *prev_filters)
+{
+    image *single_filters = weighted_sum_filters(layer, 0);
+    show_images(single_filters, layer.n, window);
+
+    image delta = get_convolutional_image(layer);
+    image dc = collapse_image_layers(delta, 1);
+    char buff[256];
+    sprintf(buff, "%s: Output", window);
+    //show_image(dc, buff);
+    //save_image(dc, buff);
+    free_image(dc);
+    return single_filters;
+}
+
+#ifdef GPU
+
+cl_kernel get_convolutional_learn_bias_kernel()
+{
+    static int init = 0;
+    static cl_kernel kernel;
+    if(!init){
+        kernel = get_kernel("src/convolutional_layer.cl", "learn_bias", 0);
+        init = 1;
+    }
+    return kernel;
+}
+
+void learn_bias_convolutional_layer_ongpu(convolutional_layer layer)
+{
+    int size = convolutional_out_height(layer) * convolutional_out_width(layer);
+
+    cl_kernel kernel = get_convolutional_learn_bias_kernel();
+    cl_command_queue queue = cl.queue;
+
+    cl_uint i = 0;
+    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.batch), (void*) &layer.batch);
+    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.n), (void*) &layer.n);
+    cl.error = clSetKernelArg(kernel, i++, sizeof(size), (void*) &size);
+    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.delta_cl), (void*) &layer.delta_cl);
+    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.bias_updates_cl), (void*) &layer.bias_updates_cl);
+    check_error(cl);
+
+    const size_t global_size[] = {layer.n};
+
+    cl.error = clEnqueueNDRangeKernel(queue, kernel, 1, 0, global_size, 0, 0, 0, 0);
+    check_error(cl);
+}
+
+cl_kernel get_convolutional_bias_kernel()
+{
+    static int init = 0;
+    static cl_kernel kernel;
+    if(!init){
+        kernel = get_kernel("src/convolutional_layer.cl", "bias", 0);
+        init = 1;
+    }
+    return kernel;
+}
+
+void bias_output_gpu(const convolutional_layer layer)
+{
+    int out_h = convolutional_out_height(layer);
+    int out_w = convolutional_out_width(layer);
+    int size = out_h*out_w;
+
+    cl_kernel kernel = get_convolutional_bias_kernel();
+    cl_command_queue queue = cl.queue;
+
+    cl_uint i = 0;
+    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.n), (void*) &layer.n);
+    cl.error = clSetKernelArg(kernel, i++, sizeof(size), (void*) &size);
+    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.biases_cl), (void*) &layer.biases_cl);
+    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.output_cl), (void*) &layer.output_cl);
+    check_error(cl);
+
+    const size_t global_size[] = {layer.n*size, layer.batch};
+
+    cl.error = clEnqueueNDRangeKernel(queue, kernel, 2, 0, global_size, 0, 0, 0, 0);
+    check_error(cl);
+}
+
+//#define TIMEIT
+
+void forward_convolutional_layer_gpu(convolutional_layer layer, cl_mem in)
+{
+    int i;
+    int m = layer.n;
+    int k = layer.size*layer.size*layer.c;
+    int n = convolutional_out_height(layer)*
+        convolutional_out_width(layer);
+
+    bias_output_gpu(layer);
+
+    for(i = 0; i < layer.batch; ++i){
+        im2col_ongpu(in, i*layer.c*layer.h*layer.w, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, layer.col_image_cl);
+        cl_mem a = layer.filters_cl;
+        cl_mem b = layer.col_image_cl;
+        cl_mem c = layer.output_cl;
+        gemm_ongpu_offset(0,0,m,n,k,1.,a,0,k,b,0,n,1.,c,i*m*n,n);
+    }
+    activate_array_ongpu(layer.output_cl, m*n*layer.batch, layer.activation);
+}
+
+void backward_convolutional_layer_gpu(convolutional_layer layer, cl_mem in, cl_mem delta_cl)
+{
+    int i;
+    int m = layer.n;
+    int n = layer.size*layer.size*layer.c;
+    int k = convolutional_out_height(layer)*
+        convolutional_out_width(layer);
+    gradient_array_ongpu(layer.output_cl, m*k*layer.batch, layer.activation, layer.delta_cl);
+    learn_bias_convolutional_layer_ongpu(layer);
+
+    if(delta_cl) scal_ongpu(layer.batch*layer.h*layer.w*layer.c, 0, delta_cl, 1);
+
+    for(i = 0; i < layer.batch; ++i){
+        cl_mem a = layer.delta_cl;
+        cl_mem b = layer.col_image_cl;
+        cl_mem c = layer.filter_updates_cl;
+
+        im2col_ongpu(in, i*layer.c*layer.h*layer.w, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, layer.col_image_cl);
+        gemm_ongpu_offset(0,1,m,n,k,1,a,i*m*k,k,b,0,k,1,c,0,n);
+
+        if(delta_cl){
+
+            cl_mem a = layer.filters_cl;
+            cl_mem b = layer.delta_cl;
+            cl_mem c = layer.col_image_cl;
+
+            gemm_ongpu_offset(1,0,n,k,m,1,a,0,n,b,i*k*m,k,0,c,0,k);
+
+            col2im_ongpu(layer.col_image_cl, i*layer.c*layer.h*layer.w, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, delta_cl);
+        }
+    }
+}
+
+void pull_convolutional_layer(convolutional_layer layer)
+{
+    cl_read_array(layer.filters_cl, layer.filters, layer.c*layer.n*layer.size*layer.size);
+    cl_read_array(layer.biases_cl, layer.biases, layer.n);
+    cl_read_array(layer.filter_updates_cl, layer.filter_updates, layer.c*layer.n*layer.size*layer.size);
+    cl_read_array(layer.bias_updates_cl, layer.bias_updates, layer.n);
+}
+
+void push_convolutional_layer(convolutional_layer layer)
+{
+    cl_write_array(layer.filters_cl, layer.filters, layer.c*layer.n*layer.size*layer.size);
+    cl_write_array(layer.biases_cl, layer.biases, layer.n);
+    cl_write_array(layer.filter_updates_cl, layer.filter_updates, layer.c*layer.n*layer.size*layer.size);
+    cl_write_array(layer.bias_updates_cl, layer.bias_updates, layer.n);
+}
+
+void update_convolutional_layer_gpu(convolutional_layer layer)
+{
+    int size = layer.size*layer.size*layer.c*layer.n;
+    axpy_ongpu(layer.n, layer.learning_rate, layer.bias_updates_cl, 1, layer.biases_cl, 1);
+    scal_ongpu(layer.n,layer.momentum, layer.bias_updates_cl, 1);
+
+    axpy_ongpu(size, -layer.decay, layer.filters_cl, 1, layer.filter_updates_cl, 1);
+    axpy_ongpu(size, layer.learning_rate, layer.filter_updates_cl, 1, layer.filters_cl, 1);
+    scal_ongpu(size, layer.momentum, layer.filter_updates_cl, 1);
+    pull_convolutional_layer(layer);
+}
+
+
+#endif
+

--
Gitblit v1.10.0