From 7c120aef23fde5b215b0fb6eef3074a15f16ff69 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Wed, 19 Nov 2014 22:03:51 +0000
Subject: [PATCH] stable, dropout on gpu

---
 src/cnn.c |  332 ++++++++++++++++++++++++++++++++++++-------------------
 1 files changed, 217 insertions(+), 115 deletions(-)

diff --git a/src/cnn.c b/src/cnn.c
index bfba26a..f77b8f0 100644
--- a/src/cnn.c
+++ b/src/cnn.c
@@ -265,10 +265,8 @@
 
 void test_parser()
 {
-	network net = parse_network_cfg("cfg/test_parser.cfg");
-    save_network(net, "cfg/test_parser_1.cfg");
-	network net2 = parse_network_cfg("cfg/test_parser_1.cfg");
-    save_network(net2, "cfg/test_parser_2.cfg");
+	network net = parse_network_cfg("cfg/trained_imagenet.cfg");
+    save_network(net, "cfg/trained_imagenet_smaller.cfg");
 }
 
 void test_data()
@@ -278,71 +276,195 @@
 	free_data(train);
 }
 
-void train_assira()
+void train_asirra()
 {
-	network net = parse_network_cfg("cfg/assira.cfg");
+	network net = parse_network_cfg("cfg/imagenet.cfg");
+    int imgs = 1000/net.batch+1;
+    //imgs = 1;
 	srand(2222222);
 	int i = 0;
 	char *labels[] = {"cat","dog"};
+    clock_t time;
 	while(1){
-		i += 1000;
-		data train = load_data_image_pathfile_random("data/assira/train.list", 1000, labels, 2, 256, 256);
+		i += 1;
+        time=clock();
+		data train = load_data_image_pathfile_random("data/assira/train.list", imgs*net.batch, labels, 2, 256, 256);
 		normalize_data_rows(train);
-		clock_t start = clock(), end;
-		float loss = train_network_sgd_gpu(net, train, 10);
-		end = clock();
-		printf("%d: %f, Time: %lf seconds\n", i, loss, (float)(end-start)/CLOCKS_PER_SEC );
+        printf("Loaded: %lf seconds\n", sec(clock()-time));
+        time=clock();
+		//float loss = train_network_data(net, train, imgs);
+        float loss = 0;
+		printf("%d: %f, Time: %lf seconds\n", i*net.batch*imgs, loss, sec(clock()-time));
 		free_data(train);
-		if(i%10000==0){
+		if(i%10==0){
 			char buff[256];
-			sprintf(buff, "cfg/assira_backup_%d.cfg", i);
+			sprintf(buff, "cfg/asirra_backup_%d.cfg", i);
 			save_network(net, buff);
 		}
 		//lr *= .99;
 	}
 }
 
-void test_visualize()
+void train_imagenet()
 {
-	network net = parse_network_cfg("cfg/voc_imagenet.cfg");
-	srand(2222222);
-	visualize_network(net);
-	cvWaitKey(0);
+    float avg_loss = 1;
+	//network net = parse_network_cfg("/home/pjreddie/imagenet_backup/alexnet_1270.cfg");
+	network net = parse_network_cfg("cfg/imagenet.cfg");
+    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
+    int imgs = 1000/net.batch+1;
+	srand(time(0));
+	int i = 0;
+    char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list");
+    list *plist = get_paths("/data/imagenet/cls.train.list");
+    char **paths = (char **)list_to_array(plist);
+    printf("%d\n", plist->size);
+    clock_t time;
+	while(1){
+		i += 1;
+        time=clock();
+		data train = load_data_random(imgs*net.batch, paths, plist->size, labels, 1000, 256, 256);
+        //translate_data_rows(train, -144);
+        normalize_data_rows(train);
+        printf("Loaded: %lf seconds\n", sec(clock()-time));
+        time=clock();
+        #ifdef GPU
+		float loss = train_network_data_gpu(net, train, imgs);
+        avg_loss = avg_loss*.9 + loss*.1;
+		printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs*net.batch);
+        #endif
+		free_data(train);
+		if(i%10==0){
+			char buff[256];
+			sprintf(buff, "/home/pjreddie/imagenet_backup/imagenet_%d.cfg", i);
+			save_network(net, buff);
+		}
+	}
+}
+
+void validate_imagenet(char *filename)
+{
+    int i;
+	network net = parse_network_cfg(filename);
+	srand(time(0));
+
+    char **labels = get_labels("/home/pjreddie/data/imagenet/cls.val.labels.list");
+    char *path = "/home/pjreddie/data/imagenet/cls.val.list";
+
+    clock_t time;
+    float avg_acc = 0;
+    int splits = 50;
+    for(i = 0; i < splits; ++i){
+        time=clock();
+        data val = load_data_image_pathfile_part(path, i, splits, labels, 1000, 256, 256);
+        normalize_data_rows(val);
+        printf("Loaded: %d images in %lf seconds\n", val.X.rows, sec(clock()-time));
+        time=clock();
+        #ifdef GPU
+		float acc = network_accuracy_gpu(net, val);
+        avg_acc += acc;
+		printf("%d: %f, %f avg, %lf seconds, %d images\n", i, acc, avg_acc/(i+1), sec(clock()-time), val.X.rows);
+        #endif
+		free_data(val);
+	}
+}
+
+void train_imagenet_small()
+{
+	network net = parse_network_cfg("cfg/imagenet_small.cfg");
+    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
+    int imgs=1;
+    srand(111222);
+    int i = 0;
+    char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list");
+    list *plist = get_paths("/data/imagenet/cls.train.list");
+    char **paths = (char **)list_to_array(plist);
+    printf("%d\n", plist->size);
+    clock_t time;
+
+    i += 1;
+    time=clock();
+    data train = load_data_random(imgs*net.batch, paths, plist->size, labels, 1000, 256, 256);
+    normalize_data_rows(train);
+    printf("Loaded: %lf seconds\n", sec(clock()-time));
+    time=clock();
+#ifdef GPU
+    float loss = train_network_data_gpu(net, train, imgs);
+    printf("%d: %f, %lf seconds, %d images\n", i, loss, sec(clock()-time), i*imgs*net.batch);
+#endif
+    free_data(train);
+    char buff[256];
+    sprintf(buff, "/home/pjreddie/imagenet_backup/imagenet_backup_slower_larger_%d.cfg", i);
+    save_network(net, buff);
+}
+
+void test_imagenet()
+{
+	network net = parse_network_cfg("cfg/imagenet_test.cfg");
+    //imgs=1;
+    srand(2222222);
+    int i = 0;
+    char **names = get_labels("cfg/shortnames.txt");
+    clock_t time;
+    char filename[256];
+    int indexes[10];
+    while(1){
+        fgets(filename, 256, stdin);
+        image im = load_image_color(filename, 256, 256);
+        z_normalize_image(im);
+        printf("%d %d %d\n", im.h, im.w, im.c);
+        float *X = im.data;
+        time=clock();
+        float *predictions = network_predict(net, X);
+        top_predictions(net, 10, indexes);
+        printf("%s: Predicted in %f seconds.\n", filename, sec(clock()-time));
+        for(i = 0; i < 10; ++i){
+            int index = indexes[i];
+            printf("%s: %f\n", names[index], predictions[index]);
+        }
+        free_image(im);
+    }
+}
+
+void test_visualize(char *filename)
+{
+    network net = parse_network_cfg(filename);
+    visualize_network(net);
+    cvWaitKey(0);
 }
 void test_full()
 {
-	network net = parse_network_cfg("cfg/backup_1300.cfg");
-	srand(2222222);
-	int i,j;
-	int total = 100;
-	char *labels[] = {"cat","dog"};
-	FILE *fp = fopen("preds.txt","w");
-	for(i = 0; i < total; ++i){
-		visualize_network(net);
-		cvWaitKey(100);
-		data test = load_data_image_pathfile_part("images/assira/test.list", i, total, labels, 2, 256, 256);
-		image im = float_to_image(256, 256, 3,test.X.vals[0]);
-		show_image(im, "input");
-		cvWaitKey(100);
-		normalize_data_rows(test);
-		for(j = 0; j < test.X.rows; ++j){
-			float *x = test.X.vals[j];
-			forward_network(net, x, 0, 0);
-			int class = get_predicted_class_network(net);
-			fprintf(fp, "%d\n", class);
-		}
-		free_data(test);
-	}
-	fclose(fp);
+    network net = parse_network_cfg("cfg/backup_1300.cfg");
+    srand(2222222);
+    int i,j;
+    int total = 100;
+    char *labels[] = {"cat","dog"};
+    FILE *fp = fopen("preds.txt","w");
+    for(i = 0; i < total; ++i){
+        visualize_network(net);
+        cvWaitKey(100);
+        data test = load_data_image_pathfile_part("data/assira/test.list", i, total, labels, 2, 256, 256);
+        image im = float_to_image(256, 256, 3,test.X.vals[0]);
+        show_image(im, "input");
+        cvWaitKey(100);
+        normalize_data_rows(test);
+        for(j = 0; j < test.X.rows; ++j){
+            float *x = test.X.vals[j];
+            forward_network(net, x, 0, 0);
+            int class = get_predicted_class_network(net);
+            fprintf(fp, "%d\n", class);
+        }
+        free_data(test);
+    }
+    fclose(fp);
 }
 
 void test_cifar10()
 {
     network net = parse_network_cfg("cfg/cifar10_part5.cfg");
     data test = load_cifar10_data("data/cifar10/test_batch.bin");
-        clock_t start = clock(), end;
+    clock_t start = clock(), end;
     float test_acc = network_accuracy(net, test);
-        end = clock();
+    end = clock();
     printf("%f in %f Sec\n", test_acc, (float)(end-start)/CLOCKS_PER_SEC);
     visualize_network(net);
     cvWaitKey(0);
@@ -358,7 +480,7 @@
     data train = load_all_cifar10();
     while(++count <= 10000){
         clock_t start = clock(), end;
-        float loss = train_network_sgd_gpu(net, train, iters);
+        float loss = train_network_sgd(net, train, iters);
         end = clock();
         //visualize_network(net);
         //cvWaitKey(5000);
@@ -369,7 +491,7 @@
             float test_acc = network_accuracy(net, test);
             printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay);
             char buff[256];
-            sprintf(buff, "/home/pjreddie/cifar/cifar2_%d.cfg", count);
+            sprintf(buff, "/home/pjreddie/cifar/cifar10_2_%d.cfg", count);
             save_network(net, buff);
         }else{
             printf("%d: Loss: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, (float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay);
@@ -426,35 +548,16 @@
     data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10);
     data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
     translate_data_rows(train, -144);
-    //scale_data_rows(train, 1./128);
     translate_data_rows(test, -144);
-    //scale_data_rows(test, 1./128);
-    //randomize_data(train);
     int count = 0;
-    //clock_t start = clock(), end;
-    int iters = 10000/net.batch;
+    int iters = 50000/net.batch;
     while(++count <= 2000){
         clock_t start = clock(), end;
         float loss = train_network_sgd(net, train, iters);
         end = clock();
         float test_acc = network_accuracy(net, test);
-        //float test_acc = 0;
-        printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay);
-        /*printf("%f %f %f %f %f\n", mean_array(get_network_output_layer(net,0), 100),
-          mean_array(get_network_output_layer(net,1), 100),
-          mean_array(get_network_output_layer(net,2), 100),
-          mean_array(get_network_output_layer(net,3), 100),
-          mean_array(get_network_output_layer(net,4), 100));
-         */
-        //save_network(net, "cfg/nist_final2.cfg");
-
-        //printf("%5d Training Loss: %lf, Params: %f %f %f, ",count*1000, loss, lr, momentum, decay);
-        //end = clock();
-        //printf("Time: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC);
-        //start=end;
-        //lr *= .5;
+        printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC);
     }
-    //save_network(net, "cfg/nist_basic_trained.cfg");
 }
 
 void test_ensemble()
@@ -890,57 +993,56 @@
     cvWaitKey(0);
 }
 
+void test_gpu_net()
+{
+    srand(222222);
+    network net = parse_network_cfg("cfg/nist.cfg");
+    data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10);
+    data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
+    translate_data_rows(train, -144);
+    translate_data_rows(test, -144);
+    int count = 0;
+    int iters = 1000/net.batch;
+    while(++count <= 5){
+        clock_t start = clock(), end;
+        float loss = train_network_sgd(net, train, iters);
+        end = clock();
+        float test_acc = network_accuracy(net, test);
+        printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay);
+    }
+    #ifdef GPU
+    count = 0;
+    srand(222222);
+    net = parse_network_cfg("cfg/nist.cfg");
+    while(++count <= 5){
+        clock_t start = clock(), end;
+        float loss = train_network_sgd_gpu(net, train, iters);
+        end = clock();
+        float test_acc = network_accuracy(net, test);
+        printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay);
+    }
+    #endif
+}
+
 
 int main(int argc, char *argv[])
 {
-    //train_assira();
-    //test_distribution();
-    //feenableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW);
-
-    //test_blas();
-    //test_visualize();
-    //test_gpu_blas();
-    //test_blas();
-    //test_convolve_matrix();
-    //    test_im2row();
-    //test_split();
-    //test_ensemble();
-    //test_nist_single();
-    //test_nist();
-    train_nist();
-    //test_convolutional_layer();
-    //test_col2im();
-    //test_cifar10();
-    //train_cifar10();
-    //test_vince();
-    //test_full();
-    //tune_VOC();
-    //features_VOC_image(argv[1], argv[2], argv[3], 0);
-    //features_VOC_image(argv[1], argv[2], argv[3], 1);
-    //train_VOC();
-    //features_VOC_image(argv[1], argv[2], argv[3], 0, 4);
-    //features_VOC_image(argv[1], argv[2], argv[3], 1, 4);
-    //features_VOC_image_size(argv[1], atoi(argv[2]), atoi(argv[3]));
-    //visualize_imagenet_features("data/assira/train.list");
-    //visualize_imagenet_topk("data/VOC2012.list");
-    //visualize_cat();
-    //flip_network();
-    //test_visualize();
-    //test_parser();
+    if(argc < 2){
+        fprintf(stderr, "usage: %s <function>\n", argv[0]);
+        return 0;
+    }
+    if(0==strcmp(argv[1], "train")) train_imagenet();
+    else if(0==strcmp(argv[1], "asirra")) train_asirra();
+    else if(0==strcmp(argv[1], "nist")) train_nist();
+    else if(0==strcmp(argv[1], "train_small")) train_imagenet_small();
+    else if(0==strcmp(argv[1], "test_correct")) test_gpu_net();
+    else if(0==strcmp(argv[1], "test")) test_imagenet();
+    else if(0==strcmp(argv[1], "visualize")) test_visualize(argv[2]);
+    else if(0==strcmp(argv[1], "valid")) validate_imagenet(argv[2]);
+    #ifdef GPU
+    else if(0==strcmp(argv[1], "test_gpu")) test_gpu_blas();
+    #endif
+    test_parser();
     fprintf(stderr, "Success!\n");
-    //test_random_preprocess();
-    //test_random_classify();
-    //test_parser();
-    //test_backpropagate();
-    //test_ann();
-    //test_convolve();
-    //test_upsample();
-    //test_rotate();
-    //test_load();
-    //test_network();
-    //test_convolutional_layer();
-    //verify_convolutional_layer();
-    //test_color();
-    //cvWaitKey(0);
     return 0;
 }

--
Gitblit v1.10.0