From 7ca5abf9904dcffc30e40a93769fd573aded9c13 Mon Sep 17 00:00:00 2001
From: Edmond Yoo <hj3yoo@uwaterloo.ca>
Date: Sun, 14 Oct 2018 02:41:05 +0000
Subject: [PATCH] Wrapping up - adding files to make main program reproducible

---
 opencv_dnn.py |  194 ++++++++++++++++++-----------------------------
 1 files changed, 75 insertions(+), 119 deletions(-)

diff --git a/opencv_dnn.py b/opencv_dnn.py
index 9f83caa..7801bc3 100644
--- a/opencv_dnn.py
+++ b/opencv_dnn.py
@@ -1,3 +1,4 @@
+import argparse
 import ast
 import collections
 import cv2
@@ -22,19 +23,24 @@
 """
 
 
-def calc_image_hashes(card_pool, save_to=None, hash_size=32, highfreq_factor=4):
+def calc_image_hashes(card_pool, save_to=None, hash_size=None):
     """
     Calculate perceptual hash (pHash) value for each cards in the database, then store them if needed
     :param card_pool: pandas dataframe containing all card information
     :param save_to: path for the pickle file to be saved
     :param hash_size: param for pHash algorithm
-    :param highfreq_factor: param for pHash algorithm
     :return: pandas dataframe
     """
+    if hash_size is None:
+        hash_size = [16, 32]
+    elif isinstance(hash_size, int):
+        hash_size = [hash_size]
+    
     # Since some double-faced cards may result in two different cards, create a new dataframe to store the result
     new_pool = pd.DataFrame(columns=list(card_pool.columns.values))
-    new_pool['card_hash'] = np.NaN
-    #new_pool['art_hash'] = np.NaN
+    for hs in hash_size:
+            new_pool['card_hash_%d' % hs] = np.NaN
+            #new_pool['art_hash_%d' % hs] = np.NaN
     for ind, card_info in card_pool.iterrows():
         if ind % 100 == 0:
             print('Calculating hashes: %dth card' % ind)
@@ -68,20 +74,15 @@
                 print('WARNING: card %s is not found!' % img_name)
 
             # Compute value of the card's perceptual hash, then store it to the database
-            '''
-            img_art = Image.fromarray(card_img[121:580, 63:685])  # For 745*1040 size card image
-            art_hash = ih.phash(img_art, hash_size=hash_size, highfreq_factor=highfreq_factor)
-            card_info['art_hash'] = art_hash
-            '''
+            #img_art = Image.fromarray(card_img[121:580, 63:685])  # For 745*1040 size card image
             img_card = Image.fromarray(card_img)
-            card_hash = ih.phash(img_card, hash_size=hash_size, highfreq_factor=highfreq_factor)
-            card_info['card_hash'] = card_hash
+            for hs in hash_size:
+                card_hash = ih.phash(img_card, hash_size=hs)
+                card_info['card_hash_%d' % hs] = card_hash
+                #art_hash = ih.phash(img_art, hash_size=hs)
+                #card_info['art_hash_%d' % hs] = art_hash
             new_pool.loc[0 if new_pool.empty else new_pool.index.max() + 1] = card_info
 
-    # Remove uselesss fields, then pickle it if needed
-    new_pool = new_pool[['artist', 'border_color', 'collector_number', 'color_identity', 'colors', 'flavor_text',
-                         'image_uris', 'mana_cost', 'legalities', 'name', 'oracle_text', 'rarity', 'type_line',
-                         'set', 'set_name', 'power', 'toughness', 'art_hash', 'card_hash']]
     if save_to is not None:
         new_pool.to_pickle(save_to)
     return new_pool
@@ -166,72 +167,6 @@
     return warped
 
 
-'''
-# The following functions are only used in conjunction with YOLO, and is deprecated:
-# - get_outputs_names()
-# - post_process()
-# - draw_pred() 
-# Get the names of the output layers
-def get_outputs_names(net):
-    # Get the names of all the layers in the network
-    layers_names = net.getLayerNames()
-    # Get the names of the output layers, i.e. the layers with unconnected outputs
-    return [layers_names[i[0] - 1] for i in net.getUnconnectedOutLayers()]
-
-
-# Remove the bounding boxes with low confidence using non-maxima suppression
-# https://www.learnopencv.com/deep-learning-based-object-detection-using-yolov3-with-opencv-python-c/
-def post_process(frame, outs, thresh_conf, thresh_nms):
-    frame_height = frame.shape[0]
-    frame_width = frame.shape[1]
-
-    # Scan through all the bounding boxes output from the network and keep only the
-    # ones with high confidence scores. Assign the box's class label as the class with the highest score.
-    class_ids = []
-    confidences = []
-    boxes = []
-    for out in outs:
-        for detection in out:
-            scores = detection[5:]
-            class_id = np.argmax(scores)
-            confidence = scores[class_id]
-            if confidence > thresh_conf:
-                center_x = int(detection[0] * frame_width)
-                center_y = int(detection[1] * frame_height)
-                width = int(detection[2] * frame_width)
-                height = int(detection[3] * frame_height)
-                left = int(center_x - width / 2)
-                top = int(center_y - height / 2)
-                class_ids.append(class_id)
-                confidences.append(float(confidence))
-                boxes.append([left, top, width, height])
-
-    # Perform non maximum suppression to eliminate redundant overlapping boxes with lower confidences.
-    indices = [ind[0] for ind in cv2.dnn.NMSBoxes(boxes, confidences, thresh_conf, thresh_nms)]
-    
-    ret = [[class_ids[i], confidences[i], boxes[i]] for i in indices]
-    return ret
-
-
-# Draw the predicted bounding box
-def draw_pred(frame, class_id, classes, conf, left, top, right, bottom):
-    # Draw a bounding box.
-    cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255))
-
-    label = '%.2f' % conf
-
-    # Get the label for the class name and its confidence
-    if classes:
-        assert (class_id < len(classes))
-        label = '%s:%s' % (classes[class_id], label)
-
-    # Display the label at the top of the bounding box
-    label_size, base_line = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
-    top = max(top, label_size[1])
-    cv2.putText(frame, label, (left, top), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255))
-'''
-
-
 def remove_glare(img):
     """
     Reduce the effect of glaring in the image
@@ -350,7 +285,9 @@
         if os.path.exists(img_name):
             card_img = cv2.imread(img_name)
         else:
-            card_img = np.ones((h_card, w_card))
+            card_img = np.ones((h_card, w_card, 3)) * 255
+            cv2.putText(card_img, 'X', ((w_card - int(txt_scale * 25)) // 2, (h_card + int(txt_scale * 25)) // 2),
+                        cv2.FONT_HERSHEY_SIMPLEX, txt_scale, (0, 0, 0), 2)
 
         # Insert the card image, card name, and confidence bar to the graph
         img_graph[y_anchor:y_anchor + h_card, x_anchor:x_anchor + w_card] = card_img
@@ -369,14 +306,13 @@
     return img_graph
 
 
-def detect_frame(img, card_pool, hash_size=32, highfreq_factor=4, size_thresh=10000,
+def detect_frame(img, card_pool, hash_size=32, size_thresh=10000,
                  out_path=None, display=True, debug=False):
     """
     Identify all cards in the input frame, display or save the frame if needed
     :param img: input frame
     :param card_pool: pandas dataframe of all card's information
     :param hash_size: param for pHash algorithm
-    :param highfreq_factor: param for pHash algorithm
     :param size_thresh: threshold for size (in pixel) of the contour to be a candidate
     :param out_path: path to save the result
     :param display: flag for displaying the result
@@ -402,13 +338,14 @@
         '''
         img_art = img_warp[47:249, 22:294]
         img_art = Image.fromarray(img_art.astype('uint8'), 'RGB')
-        art_hash = ih.phash(img_art, hash_size=hash_size, highfreq_factor=highfreq_factor).hash.flatten()
+        art_hash = ih.phash(img_art, hash_size=hash_size).hash.flatten()
         card_pool['hash_diff'] = card_pool['art_hash'].apply(lambda x: np.count_nonzero(x != art_hash))
         '''
         img_card = Image.fromarray(img_warp.astype('uint8'), 'RGB')
         # the stored values of hashes in the dataframe is pre-emptively flattened already to minimize computation time
-        card_hash = ih.phash(img_card, hash_size=hash_size, highfreq_factor=highfreq_factor).hash.flatten()
-        card_pool['hash_diff'] = card_pool['card_hash'].apply(lambda x: np.count_nonzero(x != card_hash))
+        card_hash = ih.phash(img_card, hash_size=hash_size).hash.flatten()
+        card_pool['hash_diff'] = card_pool['card_hash_%d' % hash_size]
+        card_pool['hash_diff'] = card_pool['hash_diff'].apply(lambda x: np.count_nonzero(x != card_hash))
         min_card = card_pool[card_pool['hash_diff'] == min(card_pool['hash_diff'])].iloc[0]
         card_name = min_card['name']
         card_set = min_card['set']
@@ -417,11 +354,12 @@
 
         # Render the result, and display them if needed
         cv2.drawContours(img_result, [cnt], -1, (0, 255, 0), 2)
-        cv2.putText(img_result, card_name, (pts[0][0], pts[0][1]), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2)
+        cv2.putText(img_result, card_name, (min(pts[0][0], pts[1][0]), min(pts[0][1], pts[1][1])),
+                    cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2)
         if debug:
             # cv2.rectangle(img_warp, (22, 47), (294, 249), (0, 255, 0), 2)
-            cv2.putText(img_warp, card_name + ', ' + str(hash_diff), (0, 50),
-                        cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)
+            cv2.putText(img_warp, card_name + ', ' + str(hash_diff), (0, 20),
+                        cv2.FONT_HERSHEY_SIMPLEX, 0.4, (255, 255, 255), 1)
             cv2.imshow('card#%d' % i, img_warp)
     if display:
         cv2.imshow('Result', img_result)
@@ -432,14 +370,13 @@
     return det_cards, img_result
 
 
-def detect_video(capture, card_pool, hash_size=32, highfreq_factor=4, size_thresh=10000,
+def detect_video(capture, card_pool, hash_size=32, size_thresh=10000,
                  out_path=None, display=True, show_graph=True, debug=False):
     """
     Identify all cards in the continuous video stream, display or save the result if needed
     :param capture: input video stream
     :param card_pool: pandas dataframe of all card's information
     :param hash_size: param for pHash algorithm
-    :param highfreq_factor: param for pHash algorithm
     :param size_thresh: threshold for size (in pixel) of the contour to be a candidate
     :param out_path: path to save the result
     :param display: flag for displaying the result
@@ -471,8 +408,8 @@
                 cv2.waitKey(0)
                 break
             # Detect all cards from the current frame
-            det_cards, img_result = detect_frame(frame, card_pool, hash_size=hash_size, highfreq_factor=highfreq_factor,
-                                                 size_thresh=size_thresh, out_path=None, display=False, debug=debug)
+            det_cards, img_result = detect_frame(frame, card_pool, hash_size=hash_size, size_thresh=size_thresh,
+                                                 out_path=None, display=False, debug=debug)
             if show_graph:
                 # If the card was already detected in the previous frame, append 1 to the list
                 # If the card previously detected was not found in this trame, append 0 to the list
@@ -528,18 +465,14 @@
         cv2.destroyAllWindows()
 
 
-def main():
+def main(args):
     # Specify paths for all necessary files
-    #test_path = os.path.abspath('test_file/test4.mp4')
-    test_path = None
-    out_dir = 'out'
-    hash_size = 32
-    highfreq_factor = 4
 
-    pck_path = os.path.abspath('card_pool_%d_%d.pck' % (hash_size, highfreq_factor))
+    pck_path = os.path.abspath('card_pool.pck')
     if os.path.isfile(pck_path):
         card_pool = pd.read_pickle(pck_path)
     else:
+        print('Warning: pickle for card database %s is not found!' % pck_path)
         # Merge database for all cards, then calculate pHash values of each, store them
         df_list = []
         for set_name in Config.all_set_list:
@@ -549,44 +482,67 @@
         card_pool = pd.concat(df_list, sort=True)
         card_pool.reset_index(drop=True, inplace=True)
         card_pool.drop('Unnamed: 0', axis=1, inplace=True, errors='ignore')
+        calc_image_hashes(card_pool, save_to=pck_path)
+    ch_key = 'card_hash_%d' % args.hash_size
+    card_pool = card_pool[['name', 'set', 'collector_number', ch_key]]
 
-        card_pool = calc_image_hashes(card_pool, save_to=pck_path, hash_size=hash_size, highfreq_factor=highfreq_factor)
-    card_pool = card_pool[['name', 'set', 'collector_number', 'card_hash']]
+    # Processing time is almost linear to the size of the database
+    # Program can be much faster if the search scope for the card can be reduced
+    card_pool = card_pool[card_pool['set'].isin(Config.set_2003_list)]
 
     # ImageHash is basically just one numpy.ndarray with (hash_size)^2 number of bits. pre-emptively flattening it
     # significantly increases speed for subtracting hashes in the future.
-    card_pool['card_hash'] = card_pool['card_hash'].apply(lambda x: x.hash.flatten())
-
+    card_pool[ch_key] = card_pool[ch_key].apply(lambda x: x.hash.flatten())
 
     # If the test file isn't given, use webcam to capture video
-    if test_path is None:
+    if args.in_path is None:
         capture = cv2.VideoCapture(0)
-        detect_video(capture, card_pool, out_path='%s/result.avi' % out_dir, display=True, show_graph=True, debug=False)
+        detect_video(capture, card_pool, hash_size=args.hash_size, out_path='%s/result.avi' % args.out_path,
+                     display=args.display, show_graph=args.show_graph, debug=args.debug)
         capture.release()
     else:
-        # Save the detection result if out_dir is provided
-        if out_dir is None or out_dir == '':
+        # Save the detection result if args.out_path is provided
+        if args.out_path is None:
             out_path = None
         else:
-            f_name = os.path.split(test_path)[1]
-            out_path = '%s/%s.avi' % (out_dir, f_name[:f_name.find('.')])
+            f_name = os.path.split(args.in_path)[1]
+            out_path = '%s/%s.avi' % (args.out_path, f_name[:f_name.find('.')])
 
-        if not os.path.isfile(test_path):
-            print('The test file %s doesn\'t exist!' % os.path.abspath(test_path))
+        if not os.path.isfile(args.in_path):
+            print('The test file %s doesn\'t exist!' % os.path.abspath(args.in_path))
             return
         # Check if test file is image or video
-        test_ext = test_path[test_path.find('.') + 1:]
+        test_ext = args.in_path[args.in_path.find('.') + 1:]
         if test_ext in ['jpg', 'jpeg', 'bmp', 'png', 'tiff']:
             # Test file is an image
-            img = cv2.imread(test_path)
-            detect_frame(img, card_pool, out_path=out_path)
+            img = cv2.imread(args.in_path)
+            detect_frame(img, card_pool, hash_size=args.hash_size, out_path=out_path, display=args.display,
+                         debug=args.debug)
         else:
             # Test file is a video
-            capture = cv2.VideoCapture(test_path)
-            detect_video(capture, card_pool, out_path=out_path, display=True, show_graph=True, debug=False)
+            capture = cv2.VideoCapture(args.in_path)
+            detect_video(capture, card_pool, hash_size=args.hash_size, out_path=out_path, display=args.display,
+                         show_graph=args.show_graph, debug=args.debug)
             capture.release()
     pass
 
 
 if __name__ == '__main__':
-    main()
+    parser = argparse.ArgumentParser()
+    parser.add_argument('-i', '--in', dest='in_path', help='Path of the input file. For webcam, leave it blank',
+                        type=str)
+    parser.add_argument('-o', '--out', dest='out_path', help='Path of the output directory to save the result',
+                        type=str)
+    parser.add_argument('-hs', '--hash_size', dest='hash_size',
+                        help='Size of the hash for pHash algorithm', type=int, default=16)
+    parser.add_argument('-dsp', '--display', dest='display', help='Display the result', action='store_true',
+                        default=False)
+    parser.add_argument('-dbg', '--debug', dest='debug', help='Enable debug mode', action='store_true', default=False)
+    parser.add_argument('-gph', '--show_graph', dest='show_graph', help='Display the graph for video output', 
+                        action='store_true', default=False)
+    args = parser.parse_args()
+    if not args.display and args.out_path is None:
+        # Then why the heck are you running this thing in the first place?
+        print('The program isn\'t displaying nor saving any output file. Please change the setting and try again.')
+        exit()
+    main(args)

--
Gitblit v1.10.0