From 7ebaec7306e8c3cddbe66edfc761370ecd6fe18b Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Fri, 14 Aug 2015 00:59:26 +0000
Subject: [PATCH] Need to keep GPU off by default
---
src/detection.c | 210 +++++++++++++++++++++++++++++++---------------------
1 files changed, 125 insertions(+), 85 deletions(-)
diff --git a/src/detection.c b/src/detection.c
index e21e120..f595701 100644
--- a/src/detection.c
+++ b/src/detection.c
@@ -3,23 +3,27 @@
#include "cost_layer.h"
#include "utils.h"
#include "parser.h"
+#include "box.h"
char *class_names[] = {"aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"};
-void draw_detection(image im, float *box, int side, char *label)
+void draw_detection(image im, float *box, int side, int objectness, char *label)
{
int classes = 20;
- int elems = 4+classes;
+ int elems = 4+classes+objectness;
int j;
int r, c;
for(r = 0; r < side; ++r){
for(c = 0; c < side; ++c){
j = (r*side + c) * elems;
+ float scale = 1;
+ if(objectness) scale = 1 - box[j++];
int class = max_index(box+j, classes);
- if(box[j+class] > 0.2){
- printf("%f %s\n", box[j+class], class_names[class]);
+ if(scale * box[j+class] > 0.2){
+ int width = box[j+class]*5 + 1;
+ printf("%f %s\n", scale * box[j+class], class_names[class]);
float red = get_color(0,class,classes);
float green = get_color(1,class,classes);
float blue = get_color(2,class,classes);
@@ -38,9 +42,7 @@
int right = (x+w/2)*im.w;
int top = (y-h/2)*im.h;
int bot = (y+h/2)*im.h;
- draw_box(im, left, top, right, bot, red, green, blue);
- draw_box(im, left+1, top+1, right+1, bot+1, red, green, blue);
- draw_box(im, left-1, top-1, right-1, bot-1, red, green, blue);
+ draw_box_width(im, left, top, right, bot, width, red, green, blue);
}
}
}
@@ -49,9 +51,10 @@
void train_detection(char *cfgfile, char *weightfile)
{
+ char *train_images = "/home/pjreddie/data/voc/test/train.txt";
+ char *backup_directory = "/home/pjreddie/backup/";
srand(time(0));
data_seed = time(0);
- int imgnet = 0;
char *base = basecfg(cfgfile);
printf("%s\n", base);
float avg_loss = -1;
@@ -66,85 +69,106 @@
data train, buffer;
int classes = layer.classes;
- int background = (layer.background || layer.objectness);
- printf("%d\n", background);
+ int background = layer.objectness;
int side = sqrt(get_detection_layer_locations(layer));
char **paths;
- list *plist;
- if (imgnet){
- plist = get_paths("/home/pjreddie/data/imagenet/det.train.list");
- }else{
- //plist = get_paths("/home/pjreddie/data/voc/no_2012_val.txt");
- //plist = get_paths("/home/pjreddie/data/voc/no_2007_test.txt");
- //plist = get_paths("/home/pjreddie/data/voc/val_2012.txt");
- //plist = get_paths("/home/pjreddie/data/voc/no_2007_test.txt");
- //plist = get_paths("/home/pjreddie/data/coco/trainval.txt");
- plist = get_paths("/home/pjreddie/data/voc/all2007-2012.txt");
- }
+ list *plist = get_paths(train_images);
+ int N = plist->size;
+
paths = (char **)list_to_array(plist);
pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, net.w, net.h, side, side, background, &buffer);
clock_t time;
- while(1){
+ while(i*imgs < N*130){
i += 1;
time=clock();
pthread_join(load_thread, 0);
train = buffer;
load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, net.w, net.h, side, side, background, &buffer);
-/*
- image im = float_to_image(net.w, net.h, 3, train.X.vals[114]);
- image copy = copy_image(im);
- draw_detection(copy, train.y.vals[114], 7, "truth");
- cvWaitKey(0);
- free_image(copy);
- */
-
printf("Loaded: %lf seconds\n", sec(clock()-time));
time=clock();
float loss = train_network(net, train);
net.seen += imgs;
if (avg_loss < 0) avg_loss = loss;
avg_loss = avg_loss*.9 + loss*.1;
+
printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs);
- if(i == 100){
+ if((i-1)*imgs <= N && i*imgs > N){
+ fprintf(stderr, "First stage done\n");
net.learning_rate *= 10;
+ char buff[256];
+ sprintf(buff, "%s/%s_first_stage.weights", backup_directory, base);
+ save_weights(net, buff);
+ }
+ if((i-1)*imgs <= 80*N && i*imgs > N*80){
+ fprintf(stderr, "Second stage done.\n");
+ net.learning_rate *= .1;
+ char buff[256];
+ sprintf(buff, "%s/%s_second_stage.weights", backup_directory, base);
+ save_weights(net, buff);
+ return;
+ }
+ if((i-1)*imgs <= 120*N && i*imgs > N*120){
+ fprintf(stderr, "Third stage done.\n");
+ char buff[256];
+ sprintf(buff, "%s/%s_third_stage.weights", backup_directory, base);
+ net.layers[net.n-1].rescore = 1;
+ save_weights(net, buff);
}
if(i%1000==0){
char buff[256];
- sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.weights",base, i);
+ sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
save_weights(net, buff);
}
free_data(train);
}
+ char buff[256];
+ sprintf(buff, "%s/%s_final.weights", backup_directory, base);
+ save_weights(net, buff);
}
-void predict_detections(network net, data d, float threshold, int offset, int classes, int objectness, int background, int num_boxes, int per_box)
+void convert_detections(float *predictions, int classes, int objectness, int background, int num_boxes, int w, int h, float thresh, float **probs, box *boxes)
{
- matrix pred = network_predict_data(net, d);
- int j, k, class;
- for(j = 0; j < pred.rows; ++j){
- for(k = 0; k < pred.cols; k += per_box){
- float scale = 1.;
- int index = k/per_box;
- int row = index / num_boxes;
- int col = index % num_boxes;
- if (objectness) scale = 1.-pred.vals[j][k];
- for (class = 0; class < classes; ++class){
- int ci = k+classes+(background || objectness);
- float x = (pred.vals[j][ci + 0] + col)/num_boxes;
- float y = (pred.vals[j][ci + 1] + row)/num_boxes;
- float w = pred.vals[j][ci + 2]; // distance_from_edge(row, num_boxes);
- float h = pred.vals[j][ci + 3]; // distance_from_edge(col, num_boxes);
- w = pow(w, 2);
- h = pow(h, 2);
- float prob = scale*pred.vals[j][k+class+(background || objectness)];
- if(prob < threshold) continue;
- printf("%d %d %f %f %f %f %f\n", offset + j, class, prob, x, y, w, h);
- }
+ int i,j;
+ int per_box = 4+classes+(background || objectness);
+ for (i = 0; i < num_boxes*num_boxes; ++i){
+ float scale = 1;
+ if(objectness) scale = 1-predictions[i*per_box];
+ int offset = i*per_box+(background||objectness);
+ for(j = 0; j < classes; ++j){
+ float prob = scale*predictions[offset+j];
+ probs[i][j] = (prob > thresh) ? prob : 0;
+ }
+ int row = i / num_boxes;
+ int col = i % num_boxes;
+ offset += classes;
+ boxes[i].x = (predictions[offset + 0] + col) / num_boxes * w;
+ boxes[i].y = (predictions[offset + 1] + row) / num_boxes * h;
+ boxes[i].w = pow(predictions[offset + 2], 2) * w;
+ boxes[i].h = pow(predictions[offset + 3], 2) * h;
+ }
+}
+
+void print_detections(FILE **fps, char *id, box *boxes, float **probs, int num_boxes, int classes, int w, int h)
+{
+ int i, j;
+ for(i = 0; i < num_boxes*num_boxes; ++i){
+ float xmin = boxes[i].x - boxes[i].w/2.;
+ float xmax = boxes[i].x + boxes[i].w/2.;
+ float ymin = boxes[i].y - boxes[i].h/2.;
+ float ymax = boxes[i].y + boxes[i].h/2.;
+
+ if (xmin < 0) xmin = 0;
+ if (ymin < 0) ymin = 0;
+ if (xmax > w) xmax = w;
+ if (ymax > h) ymax = h;
+
+ for(j = 0; j < classes; ++j){
+ if (probs[i][j]) fprintf(fps[j], "%s %f %f %f %f %f\n", id, probs[i][j],
+ xmin, ymin, xmax, ymax);
}
}
- free_matrix(pred);
}
void validate_detection(char *cfgfile, char *weightfile)
@@ -153,11 +177,13 @@
if(weightfile){
load_weights(&net, weightfile);
}
+ set_batch_network(&net, 1);
detection_layer layer = get_network_detection_layer(net);
fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
srand(time(0));
- list *plist = get_paths("/home/pjreddie/data/voc/test.txt");
+ char *base = "results/comp4_det_test_";
+ list *plist = get_paths("/home/pjreddie/data/voc/test/2007_test.txt");
char **paths = (char **)list_to_array(plist);
int classes = layer.classes;
@@ -165,42 +191,58 @@
int background = layer.background;
int num_boxes = sqrt(get_detection_layer_locations(layer));
- int per_box = 4+classes+(background || objectness);
- int num_output = num_boxes*num_boxes*per_box;
+ int j;
+ FILE **fps = calloc(classes, sizeof(FILE *));
+ for(j = 0; j < classes; ++j){
+ char buff[1024];
+ snprintf(buff, 1024, "%s%s.txt", base, class_names[j]);
+ fps[j] = fopen(buff, "w");
+ }
+ box *boxes = calloc(num_boxes*num_boxes, sizeof(box));
+ float **probs = calloc(num_boxes*num_boxes, sizeof(float *));
+ for(j = 0; j < num_boxes*num_boxes; ++j) probs[j] = calloc(classes, sizeof(float *));
int m = plist->size;
- int i = 0;
- int splits = 100;
-
- int nthreads = 4;
+ int i=0;
int t;
- data *val = calloc(nthreads, sizeof(data));
- data *buf = calloc(nthreads, sizeof(data));
- pthread_t *thr = calloc(nthreads, sizeof(data));
- time_t start = time(0);
+ float thresh = .001;
+ int nms = 1;
+ float iou_thresh = .5;
+ int nthreads = 8;
+ image *val = calloc(nthreads, sizeof(image));
+ image *val_resized = calloc(nthreads, sizeof(image));
+ image *buf = calloc(nthreads, sizeof(image));
+ image *buf_resized = calloc(nthreads, sizeof(image));
+ pthread_t *thr = calloc(nthreads, sizeof(pthread_t));
for(t = 0; t < nthreads; ++t){
- int num = (i+1+t)*m/splits - (i+t)*m/splits;
- char **part = paths+((i+t)*m/splits);
- thr[t] = load_data_thread(part, num, 0, 0, num_output, net.w, net.h, &(buf[t]));
+ thr[t] = load_image_thread(paths[i+t], &buf[t], &buf_resized[t], net.w, net.h);
}
-
- for(i = nthreads; i <= splits; i += nthreads){
- for(t = 0; t < nthreads; ++t){
+ time_t start = time(0);
+ for(i = nthreads; i < m+nthreads; i += nthreads){
+ fprintf(stderr, "%d\n", i);
+ for(t = 0; t < nthreads && i+t-nthreads < m; ++t){
pthread_join(thr[t], 0);
val[t] = buf[t];
+ val_resized[t] = buf_resized[t];
}
- for(t = 0; t < nthreads && i < splits; ++t){
- int num = (i+1+t)*m/splits - (i+t)*m/splits;
- char **part = paths+((i+t)*m/splits);
- thr[t] = load_data_thread(part, num, 0, 0, num_output, net.w, net.h, &(buf[t]));
+ for(t = 0; t < nthreads && i+t < m; ++t){
+ thr[t] = load_image_thread(paths[i+t], &buf[t], &buf_resized[t], net.w, net.h);
}
-
- fprintf(stderr, "%d\n", i);
- for(t = 0; t < nthreads; ++t){
- predict_detections(net, val[t], .001, (i-nthreads+t)*m/splits, classes, objectness, background, num_boxes, per_box);
- free_data(val[t]);
+ for(t = 0; t < nthreads && i+t-nthreads < m; ++t){
+ char *path = paths[i+t-nthreads];
+ char *id = basecfg(path);
+ float *X = val_resized[t].data;
+ float *predictions = network_predict(net, X);
+ int w = val[t].w;
+ int h = val[t].h;
+ convert_detections(predictions, classes, objectness, background, num_boxes, w, h, thresh, probs, boxes);
+ if (nms) do_nms(boxes, probs, num_boxes, classes, iou_thresh);
+ print_detections(fps, id, boxes, probs, num_boxes, classes, w, h);
+ free(id);
+ free_image(val[t]);
+ free_image(val_resized[t]);
}
}
fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start));
@@ -214,8 +256,6 @@
load_weights(&net, weightfile);
}
detection_layer layer = get_network_detection_layer(net);
- if (!layer.joint) fprintf(stderr, "Detection layer should use joint prediction to draw correctly.\n");
- int im_size = 448;
set_batch_network(&net, 1);
srand(2222222);
clock_t time;
@@ -230,12 +270,12 @@
strtok(input, "\n");
}
image im = load_image_color(input,0,0);
- image sized = resize_image(im, im_size, im_size);
+ image sized = resize_image(im, net.w, net.h);
float *X = sized.data;
time=clock();
float *predictions = network_predict(net, X);
printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
- draw_detection(im, predictions, 7, "predictions");
+ draw_detection(im, predictions, 7, layer.objectness, "predictions");
free_image(im);
free_image(sized);
#ifdef OPENCV
--
Gitblit v1.10.0