From 815e7a127b062aa8bc4f4ba7af2cfd97c232f34c Mon Sep 17 00:00:00 2001
From: AlexeyAB <alexeyab84@gmail.com>
Date: Wed, 02 Aug 2017 21:48:29 +0000
Subject: [PATCH] Supported OpenCV 3.0 and 2.4.13. Supported Windows and Linux.

---
 README.md |   42 +++++++++++++++++++++++++-----------------
 1 files changed, 25 insertions(+), 17 deletions(-)

diff --git a/README.md b/README.md
index 65f6c79..3693421 100644
--- a/README.md
+++ b/README.md
@@ -53,22 +53,26 @@
 
 ##### Example of usage in cmd-files from `build\darknet\x64\`:
 
-* `darknet_voc.cmd` - initialization with 256 MB VOC-model yolo-voc.weights & yolo-voc.cfg and waiting for entering the name of the image file
-* `darknet_demo_voc.cmd` - initialization with 256 MB VOC-model yolo-voc.weights & yolo-voc.cfg and play your video file which you must rename to: test.mp4, and store result to: test_dnn_out.avi
-* `darknet_net_cam_voc.cmd` - initialization with 256 MB VOC-model, play video from network video-camera mjpeg-stream (also from you phone) and store result to: test_dnn_out.avi
-* `darknet_web_cam_voc.cmd` - initialization with 256 MB VOC-model, play video from Web-Camera number #0 and store result to: test_dnn_out.avi
+* `darknet_voc.cmd` - initialization with 194 MB VOC-model yolo-voc.weights & yolo-voc.cfg and waiting for entering the name of the image file
+* `darknet_demo_voc.cmd` - initialization with 194 MB VOC-model yolo-voc.weights & yolo-voc.cfg and play your video file which you must rename to: test.mp4, and store result to: test_dnn_out.avi
+* `darknet_net_cam_voc.cmd` - initialization with 194 MB VOC-model, play video from network video-camera mjpeg-stream (also from you phone) and store result to: test_dnn_out.avi
+* `darknet_web_cam_voc.cmd` - initialization with 194 MB VOC-model, play video from Web-Camera number #0 and store result to: test_dnn_out.avi
+* `darknet_coco_9000.cmd` - initialization with 186 MB Yolo9000 COCO-model, and show detection on the image: dog.jpg
+* `darknet_coco_9000_demo.cmd` - initialization with 186 MB Yolo9000 COCO-model, and show detection on the video (if it is present): street4k.mp4
 
 ##### How to use on the command line:
-* 256 MB COCO-model - image: `darknet.exe detector test data/coco.data yolo.cfg yolo.weights -i 0 -thresh 0.2`
+* 194 MB COCO-model - image: `darknet.exe detector test data/coco.data yolo.cfg yolo.weights -i 0 -thresh 0.2`
 * Alternative method 256 MB COCO-model - image: `darknet.exe detect yolo.cfg yolo.weights -i 0 -thresh 0.2`
-* 256 MB VOC-model - image: `darknet.exe detector test data/voc.data yolo-voc.cfg yolo-voc.weights -i 0`
-* 256 MB COCO-model - video: `darknet.exe detector demo data/coco.data yolo.cfg yolo.weights test.mp4 -i 0`
-* 256 MB VOC-model - video: `darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights test.mp4 -i 0`
+* 194 MB VOC-model - image: `darknet.exe detector test data/voc.data yolo-voc.cfg yolo-voc.weights -i 0`
+* 194 MB COCO-model - video: `darknet.exe detector demo data/coco.data yolo.cfg yolo.weights test.mp4 -i 0`
+* 194 MB VOC-model - video: `darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights test.mp4 -i 0`
 * Alternative method 256 MB VOC-model - video: `darknet.exe yolo demo yolo-voc.cfg yolo-voc.weights test.mp4 -i 0`
 * 60 MB VOC-model for video: `darknet.exe detector demo data/voc.data tiny-yolo-voc.cfg tiny-yolo-voc.weights test.mp4 -i 0`
-* 256 MB COCO-model for net-videocam - Smart WebCam: `darknet.exe detector demo data/coco.data yolo.cfg yolo.weights http://192.168.0.80:8080/video?dummy=param.mjpg -i 0`
-* 256 MB VOC-model for net-videocam - Smart WebCam: `darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights http://192.168.0.80:8080/video?dummy=param.mjpg -i 0`
-* 256 MB VOC-model - WebCamera #0: `darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights -c 0`
+* 194 MB COCO-model for net-videocam - Smart WebCam: `darknet.exe detector demo data/coco.data yolo.cfg yolo.weights http://192.168.0.80:8080/video?dummy=param.mjpg -i 0`
+* 194 MB VOC-model for net-videocam - Smart WebCam: `darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights http://192.168.0.80:8080/video?dummy=param.mjpg -i 0`
+* 194 MB VOC-model - WebCamera #0: `darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights -c 0`
+* 186 MB Yolo9000 - image: `darknet.exe detector test cfg/combine9k.data yolo9000.cfg yolo9000.weights`
+* 186 MB Yolo9000 - video: `darknet.exe detector demo cfg/combine9k.data yolo9000.cfg yolo9000.weights test.mp4`
 
 ##### For using network video-camera mjpeg-stream with any Android smartphone:
 
@@ -169,9 +173,9 @@
 
 5. Run command: `type 2007_train.txt 2007_val.txt 2012_*.txt > train.txt`
 
-6. Set `batch=64` and `subdivisions=8` in the file `yolo-voc.cfg`: [link](https://github.com/AlexeyAB/darknet/blob/master/build/darknet/x64/yolo-voc.cfg#L3)
+6. Set `batch=64` and `subdivisions=8` in the file `yolo-voc.2.0.cfg`: [link](https://github.com/AlexeyAB/darknet/blob/master/build/darknet/x64/yolo-voc.cfg#L3)
 
-7. Start training by using `train_voc.cmd` or by using the command line: `darknet.exe detector train data/voc.data yolo-voc.cfg darknet19_448.conv.23`
+7. Start training by using `train_voc.cmd` or by using the command line: `darknet.exe detector train data/voc.data yolo-voc.2.0.cfg darknet19_448.conv.23`
 
 If required change pathes in the file `build\darknet\x64\data\voc.data`
 
@@ -179,9 +183,9 @@
 
 ## How to train with multi-GPU:
 
-1. Train it first on 1 GPU for like 1000 iterations: `darknet.exe detector train data/voc.data yolo-voc.cfg darknet19_448.conv.23`
+1. Train it first on 1 GPU for like 1000 iterations: `darknet.exe detector train data/voc.data yolo-voc.2.0.cfg darknet19_448.conv.23`
 
-2. Then stop and by using partially-trained model `/backup/yolo-voc_1000.weights` run training with multigpu (up to 4 GPUs): `darknet.exe detector train data/voc.data yolo-voc.cfg yolo-voc_1000.weights -gpus 0,1,2,3`
+2. Then stop and by using partially-trained model `/backup/yolo-voc_1000.weights` run training with multigpu (up to 4 GPUs): `darknet.exe detector train data/voc.data yolo-voc.2.0.cfg yolo-voc_1000.weights -gpus 0,1,2,3`
 
 https://groups.google.com/d/msg/darknet/NbJqonJBTSY/Te5PfIpuCAAJ
 
@@ -194,7 +198,7 @@
   * change line `classes=20` to your number of objects
   * change line #237 from [`filters=125`](https://github.com/AlexeyAB/darknet/blob/master/cfg/yolo-voc.cfg#L237) to `filters=(classes + 5)*5` (generally this depends on the `num` and `coords`, i.e. equal to `(classes + coords + 1)*num`)
 
-  For example, for 2 objects, your file `yolo-obj.cfg` should differ from `yolo-voc.cfg` in such lines:
+  For example, for 2 objects, your file `yolo-obj.cfg` should differ from `yolo-voc.2.0.cfg` in such lines:
 
   ```
   [convolutional]
@@ -246,6 +250,8 @@
 
 8. Start training by using the command line: `darknet.exe detector train data/obj.data yolo-obj.cfg darknet19_448.conv.23`
 
+    (file `yolo-obj_xxx.weights` will be saved to the `build\darknet\x64\backup\` for each 100 iterations until 1000 iterations has been reached, and after for each 1000 iterations)
+
 9. After training is complete - get result `yolo-obj_final.weights` from path `build\darknet\x64\backup\`
 
  * After each 1000 iterations you can stop and later start training from this point. For example, after 2000 iterations you can stop training, and later just copy `yolo-obj_2000.weights` from `build\darknet\x64\backup\` to `build\darknet\x64\` and start training using: `darknet.exe detector train data/obj.data yolo-obj.cfg yolo-obj_2000.weights`
@@ -275,6 +281,8 @@
 
 ![Overfitting](https://hsto.org/files/5dc/7ae/7fa/5dc7ae7fad9d4e3eb3a484c58bfc1ff5.png) 
 
+To get weights from Early Stopping Point:
+
   2.1. At first, in your file `obj.data` you must specify the path to the validation dataset `valid = valid.txt` (format of `valid.txt` as in `train.txt`), and if you haven't validation images, just copy `data\train.txt` to `data\valid.txt`.
 
   2.2 If training is stopped after 9000 iterations, to validate some of previous weights use this commands:
@@ -290,7 +298,7 @@
 * **IOU** - the bigger, the better (says about accuracy) - **better to use**
 * **Recall** - the bigger, the better (says about accuracy) - actually Yolo calculates true positives, so it shouldn't be used
 
-For example, **bigger IUO** gives weights `yolo-obj_8000.weights` - then **use this weights for detection**.
+For example, **bigger IOU** gives weights `yolo-obj_8000.weights` - then **use this weights for detection**.
 
 
 ![precision_recall_iou](https://hsto.org/files/ca8/866/d76/ca8866d76fb840228940dbf442a7f06a.jpg)

--
Gitblit v1.10.0