From 81751b47dd5d2e63f571f048bdd0a6a2a45617b0 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Mon, 30 Mar 2015 19:04:03 +0000
Subject: [PATCH] ..... and back to coords

---
 src/parser.c |  628 +++++++++++++++++++++++++++++++++++++-------------------
 1 files changed, 416 insertions(+), 212 deletions(-)

diff --git a/src/parser.c b/src/parser.c
index 1656346..e4ee17e 100644
--- a/src/parser.c
+++ b/src/parser.c
@@ -4,12 +4,16 @@
 
 #include "parser.h"
 #include "activations.h"
+#include "crop_layer.h"
+#include "cost_layer.h"
 #include "convolutional_layer.h"
+#include "deconvolutional_layer.h"
 #include "connected_layer.h"
 #include "maxpool_layer.h"
 #include "normalization_layer.h"
 #include "softmax_layer.h"
 #include "dropout_layer.h"
+#include "detection_layer.h"
 #include "list.h"
 #include "option_list.h"
 #include "utils.h"
@@ -19,11 +23,16 @@
     list *options;
 }section;
 
+int is_network(section *s);
 int is_convolutional(section *s);
+int is_deconvolutional(section *s);
 int is_connected(section *s);
 int is_maxpool(section *s);
 int is_dropout(section *s);
 int is_softmax(section *s);
+int is_crop(section *s);
+int is_cost(section *s);
+int is_detection(section *s);
 int is_normalization(section *s);
 list *read_cfg(char *filename);
 
@@ -43,246 +52,294 @@
     free(s);
 }
 
-convolutional_layer *parse_convolutional(list *options, network *net, int count)
+void parse_data(char *data, float *a, int n)
 {
     int i;
-    int h,w,c;
-    float learning_rate, momentum, decay;
+    if(!data) return;
+    char *curr = data;
+    char *next = data;
+    int done = 0;
+    for(i = 0; i < n && !done; ++i){
+        while(*++next !='\0' && *next != ',');
+        if(*next == '\0') done = 1;
+        *next = '\0';
+        sscanf(curr, "%g", &a[i]);
+        curr = next+1;
+    }
+}
+
+typedef struct size_params{
+    int batch;
+    int inputs;
+    int h;
+    int w;
+    int c;
+} size_params;
+
+deconvolutional_layer *parse_deconvolutional(list *options, size_params params)
+{
+    int n = option_find_int(options, "filters",1);
+    int size = option_find_int(options, "size",1);
+    int stride = option_find_int(options, "stride",1);
+    char *activation_s = option_find_str(options, "activation", "logistic");
+    ACTIVATION activation = get_activation(activation_s);
+
+    int batch,h,w,c;
+    h = params.h;
+    w = params.w;
+    c = params.c;
+    batch=params.batch;
+    if(!(h && w && c)) error("Layer before deconvolutional layer must output image.");
+
+    deconvolutional_layer *layer = make_deconvolutional_layer(batch,h,w,c,n,size,stride,activation);
+
+    char *weights = option_find_str(options, "weights", 0);
+    char *biases = option_find_str(options, "biases", 0);
+    parse_data(weights, layer->filters, c*n*size*size);
+    parse_data(biases, layer->biases, n);
+    #ifdef GPU
+    if(weights || biases) push_deconvolutional_layer(*layer);
+    #endif
+    option_unused(options);
+    return layer;
+}
+
+convolutional_layer *parse_convolutional(list *options, size_params params)
+{
     int n = option_find_int(options, "filters",1);
     int size = option_find_int(options, "size",1);
     int stride = option_find_int(options, "stride",1);
     int pad = option_find_int(options, "pad",0);
-    char *activation_s = option_find_str(options, "activation", "sigmoid");
+    char *activation_s = option_find_str(options, "activation", "logistic");
     ACTIVATION activation = get_activation(activation_s);
-    if(count == 0){
-        learning_rate = option_find_float(options, "learning_rate", .001);
-        momentum = option_find_float(options, "momentum", .9);
-        decay = option_find_float(options, "decay", .0001);
-        h = option_find_int(options, "height",1);
-        w = option_find_int(options, "width",1);
-        c = option_find_int(options, "channels",1);
-        net->batch = option_find_int(options, "batch",1);
-        net->learning_rate = learning_rate;
-        net->momentum = momentum;
-        net->decay = decay;
-    }else{
-        learning_rate = option_find_float_quiet(options, "learning_rate", net->learning_rate);
-        momentum = option_find_float_quiet(options, "momentum", net->momentum);
-        decay = option_find_float_quiet(options, "decay", net->decay);
-        image m =  get_network_image_layer(*net, count-1);
-        h = m.h;
-        w = m.w;
-        c = m.c;
-        if(h == 0) error("Layer before convolutional layer must output image.");
-    }
-    convolutional_layer *layer = make_convolutional_layer(net->batch,h,w,c,n,size,stride,pad,activation,learning_rate,momentum,decay);
-    char *data = option_find_str(options, "data", 0);
-    if(data){
-        char *curr = data;
-        char *next = data;
-        for(i = 0; i < n; ++i){
-            while(*++next !='\0' && *next != ',');
-            *next = '\0';
-            sscanf(curr, "%g", &layer->biases[i]);
-            curr = next+1;
-        }
-        for(i = 0; i < c*n*size*size; ++i){
-            while(*++next !='\0' && *next != ',');
-            *next = '\0';
-            sscanf(curr, "%g", &layer->filters[i]);
-            curr = next+1;
-        }
-    }
+
+    int batch,h,w,c;
+    h = params.h;
+    w = params.w;
+    c = params.c;
+    batch=params.batch;
+    if(!(h && w && c)) error("Layer before convolutional layer must output image.");
+
+    convolutional_layer *layer = make_convolutional_layer(batch,h,w,c,n,size,stride,pad,activation);
+
     char *weights = option_find_str(options, "weights", 0);
     char *biases = option_find_str(options, "biases", 0);
-    if(biases){
-        char *curr = biases;
-        char *next = biases;
-        int done = 0;
-        for(i = 0; i < n && !done; ++i){
-            while(*++next !='\0' && *next != ',');
-            if(*next == '\0') done = 1;
-            *next = '\0';
-            sscanf(curr, "%g", &layer->biases[i]);
-            curr = next+1;
-        }
-    }
-    if(weights){
-        char *curr = weights;
-        char *next = weights;
-        int done = 0;
-        for(i = 0; i < c*n*size*size && !done; ++i){
-            while(*++next !='\0' && *next != ',');
-            if(*next == '\0') done = 1;
-            *next = '\0';
-            sscanf(curr, "%g", &layer->filters[i]);
-            curr = next+1;
-        }
-    }
+    parse_data(weights, layer->filters, c*n*size*size);
+    parse_data(biases, layer->biases, n);
+    #ifdef GPU
+    if(weights || biases) push_convolutional_layer(*layer);
+    #endif
     option_unused(options);
     return layer;
 }
 
-connected_layer *parse_connected(list *options, network *net, int count)
+connected_layer *parse_connected(list *options, size_params params)
 {
-    int i;
-    int input;
-    float learning_rate, momentum, decay;
     int output = option_find_int(options, "output",1);
-    char *activation_s = option_find_str(options, "activation", "sigmoid");
+    char *activation_s = option_find_str(options, "activation", "logistic");
     ACTIVATION activation = get_activation(activation_s);
-    if(count == 0){
-        input = option_find_int(options, "input",1);
-        net->batch = option_find_int(options, "batch",1);
-        learning_rate = option_find_float(options, "learning_rate", .001);
-        momentum = option_find_float(options, "momentum", .9);
-        decay = option_find_float(options, "decay", .0001);
-        net->learning_rate = learning_rate;
-        net->momentum = momentum;
-        net->decay = decay;
-    }else{
-        learning_rate = option_find_float_quiet(options, "learning_rate", net->learning_rate);
-        momentum = option_find_float_quiet(options, "momentum", net->momentum);
-        decay = option_find_float_quiet(options, "decay", net->decay);
-        input =  get_network_output_size_layer(*net, count-1);
-    }
-    connected_layer *layer = make_connected_layer(net->batch, input, output, activation,learning_rate,momentum,decay);
-    char *data = option_find_str(options, "data", 0);
-    if(data){
-        char *curr = data;
-        char *next = data;
-        for(i = 0; i < output; ++i){
-            while(*++next !='\0' && *next != ',');
-            *next = '\0';
-            sscanf(curr, "%g", &layer->biases[i]);
-            curr = next+1;
-        }
-        for(i = 0; i < input*output; ++i){
-            while(*++next !='\0' && *next != ',');
-            *next = '\0';
-            sscanf(curr, "%g", &layer->weights[i]);
-            curr = next+1;
-        }
-    }
+
+    connected_layer *layer = make_connected_layer(params.batch, params.inputs, output, activation);
+
+    char *weights = option_find_str(options, "weights", 0);
+    char *biases = option_find_str(options, "biases", 0);
+    parse_data(biases, layer->biases, output);
+    parse_data(weights, layer->weights, params.inputs*output);
+    #ifdef GPU
+    if(weights || biases) push_connected_layer(*layer);
+    #endif
     option_unused(options);
     return layer;
 }
 
-softmax_layer *parse_softmax(list *options, network *net, int count)
+softmax_layer *parse_softmax(list *options, size_params params)
 {
-    int input;
-    if(count == 0){
-        input = option_find_int(options, "input",1);
-        net->batch = option_find_int(options, "batch",1);
-    }else{
-        input =  get_network_output_size_layer(*net, count-1);
-    }
-    softmax_layer *layer = make_softmax_layer(net->batch, input);
+    int groups = option_find_int(options, "groups",1);
+    softmax_layer *layer = make_softmax_layer(params.batch, params.inputs, groups);
     option_unused(options);
     return layer;
 }
 
-maxpool_layer *parse_maxpool(list *options, network *net, int count)
+detection_layer *parse_detection(list *options, size_params params)
 {
-    int h,w,c;
+    int coords = option_find_int(options, "coords", 1);
+    int classes = option_find_int(options, "classes", 1);
+    int rescore = option_find_int(options, "rescore", 1);
+    int nuisance = option_find_int(options, "nuisance", 0);
+    int background = option_find_int(options, "background", 1);
+    detection_layer *layer = make_detection_layer(params.batch, params.inputs, classes, coords, rescore, background, nuisance);
+    option_unused(options);
+    return layer;
+}
+
+cost_layer *parse_cost(list *options, size_params params)
+{
+    char *type_s = option_find_str(options, "type", "sse");
+    COST_TYPE type = get_cost_type(type_s);
+    cost_layer *layer = make_cost_layer(params.batch, params.inputs, type);
+    option_unused(options);
+    return layer;
+}
+
+crop_layer *parse_crop(list *options, size_params params)
+{
+    int crop_height = option_find_int(options, "crop_height",1);
+    int crop_width = option_find_int(options, "crop_width",1);
+    int flip = option_find_int(options, "flip",0);
+
+    int batch,h,w,c;
+    h = params.h;
+    w = params.w;
+    c = params.c;
+    batch=params.batch;
+    if(!(h && w && c)) error("Layer before crop layer must output image.");
+
+    crop_layer *layer = make_crop_layer(batch,h,w,c,crop_height,crop_width,flip);
+    option_unused(options);
+    return layer;
+}
+
+maxpool_layer *parse_maxpool(list *options, size_params params)
+{
     int stride = option_find_int(options, "stride",1);
     int size = option_find_int(options, "size",stride);
-    if(count == 0){
-        h = option_find_int(options, "height",1);
-        w = option_find_int(options, "width",1);
-        c = option_find_int(options, "channels",1);
-        net->batch = option_find_int(options, "batch",1);
-    }else{
-        image m =  get_network_image_layer(*net, count-1);
-        h = m.h;
-        w = m.w;
-        c = m.c;
-        if(h == 0) error("Layer before convolutional layer must output image.");
-    }
-    maxpool_layer *layer = make_maxpool_layer(net->batch,h,w,c,size,stride);
+
+    int batch,h,w,c;
+    h = params.h;
+    w = params.w;
+    c = params.c;
+    batch=params.batch;
+    if(!(h && w && c)) error("Layer before maxpool layer must output image.");
+
+    maxpool_layer *layer = make_maxpool_layer(batch,h,w,c,size,stride);
     option_unused(options);
     return layer;
 }
 
-dropout_layer *parse_dropout(list *options, network *net, int count)
+dropout_layer *parse_dropout(list *options, size_params params)
 {
-    int input;
     float probability = option_find_float(options, "probability", .5);
-    if(count == 0){
-        net->batch = option_find_int(options, "batch",1);
-        input = option_find_int(options, "input",1);
-    }else{
-        input =  get_network_output_size_layer(*net, count-1);
-    }
-    dropout_layer *layer = make_dropout_layer(net->batch,input,probability);
+    dropout_layer *layer = make_dropout_layer(params.batch, params.inputs, probability);
     option_unused(options);
     return layer;
 }
 
-normalization_layer *parse_normalization(list *options, network *net, int count)
+normalization_layer *parse_normalization(list *options, size_params params)
 {
-    int h,w,c;
     int size = option_find_int(options, "size",1);
     float alpha = option_find_float(options, "alpha", 0.);
     float beta = option_find_float(options, "beta", 1.);
     float kappa = option_find_float(options, "kappa", 1.);
-    if(count == 0){
-        h = option_find_int(options, "height",1);
-        w = option_find_int(options, "width",1);
-        c = option_find_int(options, "channels",1);
-        net->batch = option_find_int(options, "batch",1);
-    }else{
-        image m =  get_network_image_layer(*net, count-1);
-        h = m.h;
-        w = m.w;
-        c = m.c;
-        if(h == 0) error("Layer before convolutional layer must output image.");
-    }
-    normalization_layer *layer = make_normalization_layer(net->batch,h,w,c,size, alpha, beta, kappa);
+
+    int batch,h,w,c;
+    h = params.h;
+    w = params.w;
+    c = params.c;
+    batch=params.batch;
+    if(!(h && w && c)) error("Layer before normalization layer must output image.");
+
+    normalization_layer *layer = make_normalization_layer(batch,h,w,c,size, alpha, beta, kappa);
     option_unused(options);
     return layer;
 }
 
+void parse_net_options(list *options, network *net)
+{
+    net->batch = option_find_int(options, "batch",1);
+    net->learning_rate = option_find_float(options, "learning_rate", .001);
+    net->momentum = option_find_float(options, "momentum", .9);
+    net->decay = option_find_float(options, "decay", .0001);
+    net->seen = option_find_int(options, "seen",0);
+    int subdivs = option_find_int(options, "subdivisions",1);
+    net->batch /= subdivs;
+    net->subdivisions = subdivs;
+
+    net->h = option_find_int_quiet(options, "height",0);
+    net->w = option_find_int_quiet(options, "width",0);
+    net->c = option_find_int_quiet(options, "channels",0);
+    net->inputs = option_find_int_quiet(options, "inputs", net->h * net->w * net->c);
+    if(!net->inputs && !(net->h && net->w && net->c)) error("No input parameters supplied");
+    option_unused(options);
+}
+
 network parse_network_cfg(char *filename)
 {
     list *sections = read_cfg(filename);
-    network net = make_network(sections->size, 0);
-
     node *n = sections->front;
+    if(!n) error("Config file has no sections");
+    network net = make_network(sections->size - 1);
+    size_params params;
+
+    section *s = (section *)n->val;
+    list *options = s->options;
+    if(!is_network(s)) error("First section must be [net] or [network]");
+    parse_net_options(options, &net);
+
+    params.h = net.h;
+    params.w = net.w;
+    params.c = net.c;
+    params.inputs = net.inputs;
+    params.batch = net.batch;
+
+    n = n->next;
     int count = 0;
     while(n){
-        section *s = (section *)n->val;
-        list *options = s->options;
+        fprintf(stderr, "%d: ", count);
+        s = (section *)n->val;
+        options = s->options;
         if(is_convolutional(s)){
-            convolutional_layer *layer = parse_convolutional(options, &net, count);
+            convolutional_layer *layer = parse_convolutional(options, params);
             net.types[count] = CONVOLUTIONAL;
             net.layers[count] = layer;
+        }else if(is_deconvolutional(s)){
+            deconvolutional_layer *layer = parse_deconvolutional(options, params);
+            net.types[count] = DECONVOLUTIONAL;
+            net.layers[count] = layer;
         }else if(is_connected(s)){
-            connected_layer *layer = parse_connected(options, &net, count);
+            connected_layer *layer = parse_connected(options, params);
             net.types[count] = CONNECTED;
             net.layers[count] = layer;
+        }else if(is_crop(s)){
+            crop_layer *layer = parse_crop(options, params);
+            net.types[count] = CROP;
+            net.layers[count] = layer;
+        }else if(is_cost(s)){
+            cost_layer *layer = parse_cost(options, params);
+            net.types[count] = COST;
+            net.layers[count] = layer;
+        }else if(is_detection(s)){
+            detection_layer *layer = parse_detection(options, params);
+            net.types[count] = DETECTION;
+            net.layers[count] = layer;
         }else if(is_softmax(s)){
-            softmax_layer *layer = parse_softmax(options, &net, count);
+            softmax_layer *layer = parse_softmax(options, params);
             net.types[count] = SOFTMAX;
             net.layers[count] = layer;
         }else if(is_maxpool(s)){
-            maxpool_layer *layer = parse_maxpool(options, &net, count);
+            maxpool_layer *layer = parse_maxpool(options, params);
             net.types[count] = MAXPOOL;
             net.layers[count] = layer;
         }else if(is_normalization(s)){
-            normalization_layer *layer = parse_normalization(options, &net, count);
+            normalization_layer *layer = parse_normalization(options, params);
             net.types[count] = NORMALIZATION;
             net.layers[count] = layer;
         }else if(is_dropout(s)){
-            dropout_layer *layer = parse_dropout(options, &net, count);
+            dropout_layer *layer = parse_dropout(options, params);
             net.types[count] = DROPOUT;
             net.layers[count] = layer;
         }else{
             fprintf(stderr, "Type not recognized: %s\n", s->type);
         }
         free_section(s);
-        ++count;
         n = n->next;
+        if(n){
+            image im = get_network_image_layer(net, count);
+            params.h = im.h;
+            params.w = im.w;
+            params.c = im.c;
+            params.inputs = get_network_output_size_layer(net, count);
+        }
+        ++count;
     }   
     free_list(sections);
     net.outputs = get_network_output_size(net);
@@ -290,11 +347,33 @@
     return net;
 }
 
+int is_crop(section *s)
+{
+    return (strcmp(s->type, "[crop]")==0);
+}
+int is_cost(section *s)
+{
+    return (strcmp(s->type, "[cost]")==0);
+}
+int is_detection(section *s)
+{
+    return (strcmp(s->type, "[detection]")==0);
+}
+int is_deconvolutional(section *s)
+{
+    return (strcmp(s->type, "[deconv]")==0
+            || strcmp(s->type, "[deconvolutional]")==0);
+}
 int is_convolutional(section *s)
 {
     return (strcmp(s->type, "[conv]")==0
             || strcmp(s->type, "[convolutional]")==0);
 }
+int is_network(section *s)
+{
+    return (strcmp(s->type, "[net]")==0
+            || strcmp(s->type, "[network]")==0);
+}
 int is_connected(section *s)
 {
     return (strcmp(s->type, "[conn]")==0
@@ -323,8 +402,8 @@
 
 int read_option(char *s, list *options)
 {
-    int i;
-    int len = strlen(s);
+    size_t i;
+    size_t len = strlen(s);
     char *val = 0;
     for(i = 0; i < len; ++i){
         if(s[i] == '='){
@@ -364,7 +443,7 @@
                 break;
             default:
                 if(!read_option(line, current->options)){
-                    printf("Config file error line %d, could parse: %s\n", nu, line);
+                    fprintf(stderr, "Config file error line %d, could parse: %s\n", nu, line);
                     free(line);
                 }
                 break;
@@ -376,25 +455,11 @@
 
 void print_convolutional_cfg(FILE *fp, convolutional_layer *l, network net, int count)
 {
+#ifdef GPU
+    if(gpu_index >= 0)  pull_convolutional_layer(*l);
+#endif
     int i;
     fprintf(fp, "[convolutional]\n");
-    if(count == 0) {
-        fprintf(fp,   "batch=%d\n"
-                "height=%d\n"
-                "width=%d\n"
-                "channels=%d\n"
-                "learning_rate=%g\n"
-                "momentum=%g\n"
-                "decay=%g\n",
-                l->batch,l->h, l->w, l->c, l->learning_rate, l->momentum, l->decay);
-    } else {
-        if(l->learning_rate != net.learning_rate)
-                fprintf(fp, "learning_rate=%g\n", l->learning_rate);
-        if(l->momentum != net.momentum)
-                fprintf(fp, "momentum=%g\n", l->momentum);
-        if(l->decay != net.decay)
-                fprintf(fp, "decay=%g\n", l->decay);
-    }
     fprintf(fp, "filters=%d\n"
             "size=%d\n"
             "stride=%d\n"
@@ -409,54 +474,68 @@
     for(i = 0; i < l->n*l->c*l->size*l->size; ++i) fprintf(fp, "%g,", l->filters[i]);
     fprintf(fp, "\n\n");
 }
+
+void print_deconvolutional_cfg(FILE *fp, deconvolutional_layer *l, network net, int count)
+{
+#ifdef GPU
+    if(gpu_index >= 0)  pull_deconvolutional_layer(*l);
+#endif
+    int i;
+    fprintf(fp, "[deconvolutional]\n");
+    fprintf(fp, "filters=%d\n"
+            "size=%d\n"
+            "stride=%d\n"
+            "activation=%s\n",
+            l->n, l->size, l->stride,
+            get_activation_string(l->activation));
+    fprintf(fp, "biases=");
+    for(i = 0; i < l->n; ++i) fprintf(fp, "%g,", l->biases[i]);
+    fprintf(fp, "\n");
+    fprintf(fp, "weights=");
+    for(i = 0; i < l->n*l->c*l->size*l->size; ++i) fprintf(fp, "%g,", l->filters[i]);
+    fprintf(fp, "\n\n");
+}
+
+void print_dropout_cfg(FILE *fp, dropout_layer *l, network net, int count)
+{
+    fprintf(fp, "[dropout]\n");
+    fprintf(fp, "probability=%g\n\n", l->probability);
+}
+
 void print_connected_cfg(FILE *fp, connected_layer *l, network net, int count)
 {
+#ifdef GPU
+    if(gpu_index >= 0) pull_connected_layer(*l);
+#endif
     int i;
     fprintf(fp, "[connected]\n");
-    if(count == 0){
-        fprintf(fp, "batch=%d\n"
-                "input=%d\n"
-                "learning_rate=%g\n"
-                "momentum=%g\n"
-                "decay=%g\n",
-                l->batch, l->inputs, l->learning_rate, l->momentum, l->decay);
-    } else {
-        if(l->learning_rate != net.learning_rate)
-            fprintf(fp, "learning_rate=%g\n", l->learning_rate);
-        if(l->momentum != net.momentum)
-            fprintf(fp, "momentum=%g\n", l->momentum);
-        if(l->decay != net.decay)
-            fprintf(fp, "decay=%g\n", l->decay);
-    }
     fprintf(fp, "output=%d\n"
             "activation=%s\n",
             l->outputs,
             get_activation_string(l->activation));
-    fprintf(fp, "data=");
+    fprintf(fp, "biases=");
     for(i = 0; i < l->outputs; ++i) fprintf(fp, "%g,", l->biases[i]);
-    for(i = 0; i < l->inputs*l->outputs; ++i) fprintf(fp, "%g,", l->weights[i]);
+    fprintf(fp, "\n");
+    fprintf(fp, "weights=");
+    for(i = 0; i < l->outputs*l->inputs; ++i) fprintf(fp, "%g,", l->weights[i]);
     fprintf(fp, "\n\n");
 }
 
+void print_crop_cfg(FILE *fp, crop_layer *l, network net, int count)
+{
+    fprintf(fp, "[crop]\n");
+    fprintf(fp, "crop_height=%d\ncrop_width=%d\nflip=%d\n\n", l->crop_height, l->crop_width, l->flip);
+}
+
 void print_maxpool_cfg(FILE *fp, maxpool_layer *l, network net, int count)
 {
     fprintf(fp, "[maxpool]\n");
-    if(count == 0) fprintf(fp,   "batch=%d\n"
-            "height=%d\n"
-            "width=%d\n"
-            "channels=%d\n",
-            l->batch,l->h, l->w, l->c);
     fprintf(fp, "size=%d\nstride=%d\n\n", l->size, l->stride);
 }
 
 void print_normalization_cfg(FILE *fp, normalization_layer *l, network net, int count)
 {
     fprintf(fp, "[localresponsenormalization]\n");
-    if(count == 0) fprintf(fp,   "batch=%d\n"
-            "height=%d\n"
-            "width=%d\n"
-            "channels=%d\n",
-            l->batch,l->h, l->w, l->c);
     fprintf(fp, "size=%d\n"
             "alpha=%g\n"
             "beta=%g\n"
@@ -466,10 +545,125 @@
 void print_softmax_cfg(FILE *fp, softmax_layer *l, network net, int count)
 {
     fprintf(fp, "[softmax]\n");
-    if(count == 0) fprintf(fp, "batch=%d\ninput=%d\n", l->batch, l->inputs);
     fprintf(fp, "\n");
 }
 
+void print_detection_cfg(FILE *fp, detection_layer *l, network net, int count)
+{
+    fprintf(fp, "[detection]\n");
+    fprintf(fp, "classes=%d\ncoords=%d\nrescore=%d\nnuisance=%d\n", l->classes, l->coords, l->rescore, l->nuisance);
+    fprintf(fp, "\n");
+}
+
+void print_cost_cfg(FILE *fp, cost_layer *l, network net, int count)
+{
+    fprintf(fp, "[cost]\ntype=%s\n", get_cost_string(l->type));
+    fprintf(fp, "\n");
+}
+
+void save_weights(network net, char *filename)
+{
+    fprintf(stderr, "Saving weights to %s\n", filename);
+    FILE *fp = fopen(filename, "w");
+    if(!fp) file_error(filename);
+
+    fwrite(&net.learning_rate, sizeof(float), 1, fp);
+    fwrite(&net.momentum, sizeof(float), 1, fp);
+    fwrite(&net.decay, sizeof(float), 1, fp);
+    fwrite(&net.seen, sizeof(int), 1, fp);
+
+    int i;
+    for(i = 0; i < net.n; ++i){
+        if(net.types[i] == CONVOLUTIONAL){
+            convolutional_layer layer = *(convolutional_layer *) net.layers[i];
+#ifdef GPU
+            if(gpu_index >= 0){
+                pull_convolutional_layer(layer);
+            }
+#endif
+            int num = layer.n*layer.c*layer.size*layer.size;
+            fwrite(layer.biases, sizeof(float), layer.n, fp);
+            fwrite(layer.filters, sizeof(float), num, fp);
+        }
+        if(net.types[i] == DECONVOLUTIONAL){
+            deconvolutional_layer layer = *(deconvolutional_layer *) net.layers[i];
+#ifdef GPU
+            if(gpu_index >= 0){
+                pull_deconvolutional_layer(layer);
+            }
+#endif
+            int num = layer.n*layer.c*layer.size*layer.size;
+            fwrite(layer.biases, sizeof(float), layer.n, fp);
+            fwrite(layer.filters, sizeof(float), num, fp);
+        }
+        if(net.types[i] == CONNECTED){
+            connected_layer layer = *(connected_layer *) net.layers[i];
+#ifdef GPU
+            if(gpu_index >= 0){
+                pull_connected_layer(layer);
+            }
+#endif
+            fwrite(layer.biases, sizeof(float), layer.outputs, fp);
+            fwrite(layer.weights, sizeof(float), layer.outputs*layer.inputs, fp);
+        }
+    }
+    fclose(fp);
+}
+
+void load_weights_upto(network *net, char *filename, int cutoff)
+{
+    fprintf(stderr, "Loading weights from %s\n", filename);
+    FILE *fp = fopen(filename, "r");
+    if(!fp) file_error(filename);
+
+    fread(&net->learning_rate, sizeof(float), 1, fp);
+    fread(&net->momentum, sizeof(float), 1, fp);
+    fread(&net->decay, sizeof(float), 1, fp);
+    fread(&net->seen, sizeof(int), 1, fp);
+
+    int i;
+    for(i = 0; i < net->n && i < cutoff; ++i){
+        if(net->types[i] == CONVOLUTIONAL){
+            convolutional_layer layer = *(convolutional_layer *) net->layers[i];
+            int num = layer.n*layer.c*layer.size*layer.size;
+            fread(layer.biases, sizeof(float), layer.n, fp);
+            fread(layer.filters, sizeof(float), num, fp);
+#ifdef GPU
+            if(gpu_index >= 0){
+                push_convolutional_layer(layer);
+            }
+#endif
+        }
+        if(net->types[i] == DECONVOLUTIONAL){
+            deconvolutional_layer layer = *(deconvolutional_layer *) net->layers[i];
+            int num = layer.n*layer.c*layer.size*layer.size;
+            fread(layer.biases, sizeof(float), layer.n, fp);
+            fread(layer.filters, sizeof(float), num, fp);
+#ifdef GPU
+            if(gpu_index >= 0){
+                push_deconvolutional_layer(layer);
+            }
+#endif
+        }
+        if(net->types[i] == CONNECTED){
+            connected_layer layer = *(connected_layer *) net->layers[i];
+            fread(layer.biases, sizeof(float), layer.outputs, fp);
+            fread(layer.weights, sizeof(float), layer.outputs*layer.inputs, fp);
+#ifdef GPU
+            if(gpu_index >= 0){
+                push_connected_layer(layer);
+            }
+#endif
+        }
+    }
+    fclose(fp);
+}
+
+void load_weights(network *net, char *filename)
+{
+    load_weights_upto(net, filename, net->n);
+}
+
 void save_network(network net, char *filename)
 {
     FILE *fp = fopen(filename, "w");
@@ -479,14 +673,24 @@
     {
         if(net.types[i] == CONVOLUTIONAL)
             print_convolutional_cfg(fp, (convolutional_layer *)net.layers[i], net, i);
+        else if(net.types[i] == DECONVOLUTIONAL)
+            print_deconvolutional_cfg(fp, (deconvolutional_layer *)net.layers[i], net, i);
         else if(net.types[i] == CONNECTED)
             print_connected_cfg(fp, (connected_layer *)net.layers[i], net, i);
+        else if(net.types[i] == CROP)
+            print_crop_cfg(fp, (crop_layer *)net.layers[i], net, i);
         else if(net.types[i] == MAXPOOL)
             print_maxpool_cfg(fp, (maxpool_layer *)net.layers[i], net, i);
+        else if(net.types[i] == DROPOUT)
+            print_dropout_cfg(fp, (dropout_layer *)net.layers[i], net, i);
         else if(net.types[i] == NORMALIZATION)
             print_normalization_cfg(fp, (normalization_layer *)net.layers[i], net, i);
         else if(net.types[i] == SOFTMAX)
             print_softmax_cfg(fp, (softmax_layer *)net.layers[i], net, i);
+        else if(net.types[i] == DETECTION)
+            print_detection_cfg(fp, (detection_layer *)net.layers[i], net, i);
+        else if(net.types[i] == COST)
+            print_cost_cfg(fp, (cost_layer *)net.layers[i], net, i);
     }
     fclose(fp);
 }

--
Gitblit v1.10.0