From 84cdbaa1f14b4f2ca73b370c6db6a4dc9571fd07 Mon Sep 17 00:00:00 2001
From: AlexeyAB <alexeyab84@gmail.com>
Date: Sun, 29 Oct 2017 15:34:55 +0000
Subject: [PATCH] Fixed for Linux: detection for batch > 1 and 0x0d at command line

---
 README.md |    6 ++++--
 1 files changed, 4 insertions(+), 2 deletions(-)

diff --git a/README.md b/README.md
index f983ad8..11d8565 100644
--- a/README.md
+++ b/README.md
@@ -1,5 +1,7 @@
 # Yolo-v2 Windows and Linux version
 
+[![CircleCI](https://circleci.com/gh/AlexeyAB/darknet.svg?style=svg)](https://circleci.com/gh/AlexeyAB/darknet)
+
 1. [How to use](#how-to-use)
 2. [How to compile on Linux](#how-to-compile-on-linux)
 3. [How to compile on Windows](#how-to-compile-on-windows)
@@ -113,7 +115,7 @@
 * `OPENCV=1` to build with OpenCV 3.x/2.4.x - allows to detect on video files and video streams from network cameras or web-cams
 * `DEBUG=1` to bould debug version of Yolo
 * `OPENMP=1` to build with OpenMP support to accelerate Yolo by using multi-core CPU
-* `LIBSO=1` to build a library `darknet.so` and binary runable file `uselib` that uses this library. How to use this SO-library from your own code - you can look at C++ example: https://github.com/AlexeyAB/darknet/blob/master/src/yolo_console_dll.cpp
+* `LIBSO=1` to build a library `darknet.so` and binary runable file `uselib` that uses this library. Or you can try to run so `LD_LIBRARY_PATH=./:$LD_LIBRARY_PATH ./uselib test.mp4` How to use this SO-library from your own code - you can look at C++ example: https://github.com/AlexeyAB/darknet/blob/master/src/yolo_console_dll.cpp
 
 
 ### How to compile on Windows:
@@ -202,7 +204,7 @@
 
 1. Train it first on 1 GPU for like 1000 iterations: `darknet.exe detector train data/voc.data yolo-voc.2.0.cfg darknet19_448.conv.23`
 
-2. Then stop and by using partially-trained model `/backup/yolo-voc_1000.weights` run training with multigpu (up to 4 GPUs): `darknet.exe detector train data/voc.data yolo-voc.2.0.cfg yolo-voc_1000.weights -gpus 0,1,2,3`
+2. Then stop and by using partially-trained model `/backup/yolo-voc_1000.weights` run training with multigpu (up to 4 GPUs): `darknet.exe detector train data/voc.data yolo-voc.2.0.cfg /backup/yolo-voc_1000.weights -gpus 0,1,2,3`
 
 https://groups.google.com/d/msg/darknet/NbJqonJBTSY/Te5PfIpuCAAJ
 

--
Gitblit v1.10.0