From 84d6533cb8112f23a34d3de76435a10f4620f4b8 Mon Sep 17 00:00:00 2001
From: AlexeyAB <alexeyab84@gmail.com>
Date: Mon, 23 Oct 2017 13:43:03 +0000
Subject: [PATCH] Fixed OpenCV usage in the yolo_console_dll.cpp

---
 src/connected_layer.c |   92 +++++++++++++++++++++++++++------------------
 1 files changed, 55 insertions(+), 37 deletions(-)

diff --git a/src/connected_layer.c b/src/connected_layer.c
index df78e67..b678ed0 100644
--- a/src/connected_layer.c
+++ b/src/connected_layer.c
@@ -1,4 +1,5 @@
 #include "connected_layer.h"
+#include "batchnorm_layer.h"
 #include "utils.h"
 #include "cuda.h"
 #include "blas.h"
@@ -19,6 +20,12 @@
     l.outputs = outputs;
     l.batch=batch;
     l.batch_normalize = batch_normalize;
+    l.h = 1;
+    l.w = 1;
+    l.c = inputs;
+    l.out_h = 1;
+    l.out_w = 1;
+    l.out_c = outputs;
 
     l.output = calloc(batch*outputs, sizeof(float));
     l.delta = calloc(batch*outputs, sizeof(float));
@@ -29,6 +36,9 @@
     l.weights = calloc(outputs*inputs, sizeof(float));
     l.biases = calloc(outputs, sizeof(float));
 
+    l.forward = forward_connected_layer;
+    l.backward = backward_connected_layer;
+    l.update = update_connected_layer;
 
     //float scale = 1./sqrt(inputs);
     float scale = sqrt(2./inputs);
@@ -37,7 +47,7 @@
     }
 
     for(i = 0; i < outputs; ++i){
-        l.biases[i] = scale;
+        l.biases[i] = 0;
     }
 
     if(batch_normalize){
@@ -60,6 +70,10 @@
     }
 
 #ifdef GPU
+    l.forward_gpu = forward_connected_layer_gpu;
+    l.backward_gpu = backward_connected_layer_gpu;
+    l.update_gpu = update_connected_layer_gpu;
+
     l.weights_gpu = cuda_make_array(l.weights, outputs*inputs);
     l.biases_gpu = cuda_make_array(l.biases, outputs);
 
@@ -86,7 +100,7 @@
     }
 #endif
     l.activation = activation;
-    fprintf(stderr, "Connected Layer: %d inputs, %d outputs\n", inputs, outputs);
+    fprintf(stderr, "connected                            %4d  ->  %4d\n", inputs, outputs);
     return l;
 }
 
@@ -176,6 +190,41 @@
     if(c) gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
 }
 
+
+void denormalize_connected_layer(layer l)
+{
+    int i, j;
+    for(i = 0; i < l.outputs; ++i){
+        float scale = l.scales[i]/sqrt(l.rolling_variance[i] + .000001);
+        for(j = 0; j < l.inputs; ++j){
+            l.weights[i*l.inputs + j] *= scale;
+        }
+        l.biases[i] -= l.rolling_mean[i] * scale;
+        l.scales[i] = 1;
+        l.rolling_mean[i] = 0;
+        l.rolling_variance[i] = 1;
+    }
+}
+
+
+void statistics_connected_layer(layer l)
+{
+    if(l.batch_normalize){
+        printf("Scales ");
+        print_statistics(l.scales, l.outputs);
+        /*
+        printf("Rolling Mean ");
+        print_statistics(l.rolling_mean, l.outputs);
+        printf("Rolling Variance ");
+        print_statistics(l.rolling_variance, l.outputs);
+        */
+    }
+    printf("Biases ");
+    print_statistics(l.biases, l.outputs);
+    printf("Weights ");
+    print_statistics(l.weights, l.outputs);
+}
+
 #ifdef GPU
 
 void pull_connected_layer(connected_layer l)
@@ -223,11 +272,7 @@
 {
     int i;
     fill_ongpu(l.outputs*l.batch, 0, l.output_gpu, 1);
-    /*
-       for(i = 0; i < l.batch; ++i){
-       copy_ongpu_offset(l.outputs, l.biases_gpu, 0, 1, l.output_gpu, i*l.outputs, 1);
-       }
-     */
+
     int m = l.batch;
     int k = l.inputs;
     int n = l.outputs;
@@ -236,52 +281,25 @@
     float * c = l.output_gpu;
     gemm_ongpu(0,1,m,n,k,1,a,k,b,k,1,c,n);
     if(l.batch_normalize){
-        if(state.train){
-            fast_mean_gpu(l.output_gpu, l.batch, l.outputs, 1, l.mean_gpu);
-            fast_variance_gpu(l.output_gpu, l.mean_gpu, l.batch, l.outputs, 1, l.variance_gpu);
-
-            scal_ongpu(l.outputs, .95, l.rolling_mean_gpu, 1);
-            axpy_ongpu(l.outputs, .05, l.mean_gpu, 1, l.rolling_mean_gpu, 1);
-            scal_ongpu(l.outputs, .95, l.rolling_variance_gpu, 1);
-            axpy_ongpu(l.outputs, .05, l.variance_gpu, 1, l.rolling_variance_gpu, 1);
-
-            copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_gpu, 1);
-            normalize_gpu(l.output_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.outputs, 1);
-            copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_norm_gpu, 1);
-        } else {
-            normalize_gpu(l.output_gpu, l.rolling_mean_gpu, l.rolling_variance_gpu, l.batch, l.outputs, 1);
-        }
-
-        scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.outputs, 1);
+        forward_batchnorm_layer_gpu(l, state);
     }
     for(i = 0; i < l.batch; ++i){
         axpy_ongpu(l.outputs, 1, l.biases_gpu, 1, l.output_gpu + i*l.outputs, 1);
     }
     activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation);
-
-    /*
-       cuda_pull_array(l.output_gpu, l.output, l.outputs*l.batch);
-       float avg = mean_array(l.output, l.outputs*l.batch);
-       printf("%f\n", avg);
-     */
 }
 
 void backward_connected_layer_gpu(connected_layer l, network_state state)
 {
     int i;
+    constrain_ongpu(l.outputs*l.batch, 1, l.delta_gpu, 1);
     gradient_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation, l.delta_gpu);
     for(i = 0; i < l.batch; ++i){
         axpy_ongpu(l.outputs, 1, l.delta_gpu + i*l.outputs, 1, l.bias_updates_gpu, 1);
     }
 
     if(l.batch_normalize){
-        backward_scale_gpu(l.x_norm_gpu, l.delta_gpu, l.batch, l.outputs, 1, l.scale_updates_gpu);
-
-        scale_bias_gpu(l.delta_gpu, l.scales_gpu, l.batch, l.outputs, 1);
-
-        fast_mean_delta_gpu(l.delta_gpu, l.variance_gpu, l.batch, l.outputs, 1, l.mean_delta_gpu);
-        fast_variance_delta_gpu(l.x_gpu, l.delta_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.outputs, 1, l.variance_delta_gpu);
-        normalize_delta_gpu(l.x_gpu, l.mean_gpu, l.variance_gpu, l.mean_delta_gpu, l.variance_delta_gpu, l.batch, l.outputs, 1, l.delta_gpu);
+        backward_batchnorm_layer_gpu(l, state);
     }
 
     int m = l.outputs;

--
Gitblit v1.10.0