From 84d6533cb8112f23a34d3de76435a10f4620f4b8 Mon Sep 17 00:00:00 2001
From: AlexeyAB <alexeyab84@gmail.com>
Date: Mon, 23 Oct 2017 13:43:03 +0000
Subject: [PATCH] Fixed OpenCV usage in the yolo_console_dll.cpp

---
 src/dropout_layer.c |  116 ++++++++++++++++++++--------------------------------------
 1 files changed, 40 insertions(+), 76 deletions(-)

diff --git a/src/dropout_layer.c b/src/dropout_layer.c
index d4616d5..b1381e6 100644
--- a/src/dropout_layer.c
+++ b/src/dropout_layer.c
@@ -1,96 +1,60 @@
 #include "dropout_layer.h"
 #include "utils.h"
+#include "cuda.h"
 #include <stdlib.h>
 #include <stdio.h>
 
-dropout_layer *make_dropout_layer(int batch, int inputs, float probability)
+dropout_layer make_dropout_layer(int batch, int inputs, float probability)
 {
-    fprintf(stderr, "Dropout Layer: %d inputs, %f probability\n", inputs, probability);
-    dropout_layer *layer = calloc(1, sizeof(dropout_layer));
-    layer->probability = probability;
-    layer->inputs = inputs;
-    layer->batch = batch;
-    layer->rand = calloc(inputs*batch, sizeof(float));
-    layer->scale = 1./(1.-probability);
+    dropout_layer l = {0};
+    l.type = DROPOUT;
+    l.probability = probability;
+    l.inputs = inputs;
+    l.outputs = inputs;
+    l.batch = batch;
+    l.rand = calloc(inputs*batch, sizeof(float));
+    l.scale = 1./(1.-probability);
+    l.forward = forward_dropout_layer;
+    l.backward = backward_dropout_layer;
     #ifdef GPU
-    layer->rand_cl = cl_make_array(layer->rand, inputs*batch);
+    l.forward_gpu = forward_dropout_layer_gpu;
+    l.backward_gpu = backward_dropout_layer_gpu;
+    l.rand_gpu = cuda_make_array(l.rand, inputs*batch);
     #endif
-    return layer;
+    fprintf(stderr, "dropout       p = %.2f               %4d  ->  %4d\n", probability, inputs, inputs);
+    return l;
 } 
 
-void forward_dropout_layer(dropout_layer layer, float *input)
+void resize_dropout_layer(dropout_layer *l, int inputs)
+{
+    l->rand = realloc(l->rand, l->inputs*l->batch*sizeof(float));
+    #ifdef GPU
+    cuda_free(l->rand_gpu);
+
+    l->rand_gpu = cuda_make_array(l->rand, inputs*l->batch);
+    #endif
+}
+
+void forward_dropout_layer(dropout_layer l, network_state state)
 {
     int i;
-    for(i = 0; i < layer.batch * layer.inputs; ++i){
-        float r = rand_uniform();
-        layer.rand[i] = r;
-        if(r < layer.probability) input[i] = 0;
-        else input[i] *= layer.scale;
+    if (!state.train) return;
+    for(i = 0; i < l.batch * l.inputs; ++i){
+        float r = rand_uniform(0, 1);
+        l.rand[i] = r;
+        if(r < l.probability) state.input[i] = 0;
+        else state.input[i] *= l.scale;
     }
 }
 
-void backward_dropout_layer(dropout_layer layer, float *delta)
+void backward_dropout_layer(dropout_layer l, network_state state)
 {
     int i;
-    for(i = 0; i < layer.batch * layer.inputs; ++i){
-        float r = layer.rand[i];
-        if(r < layer.probability) delta[i] = 0;
-        else delta[i] *= layer.scale;
+    if(!state.delta) return;
+    for(i = 0; i < l.batch * l.inputs; ++i){
+        float r = l.rand[i];
+        if(r < l.probability) state.delta[i] = 0;
+        else state.delta[i] *= l.scale;
     }
 }
 
-#ifdef GPU
-cl_kernel get_dropout_kernel()
-{
-    static int init = 0;
-    static cl_kernel kernel;
-    if(!init){
-        kernel = get_kernel("src/dropout_layer.cl", "yoloswag420blazeit360noscope", 0);
-        init = 1;
-    }
-    return kernel;
-}
-
-void forward_dropout_layer_gpu(dropout_layer layer, cl_mem input)
-{
-    int j;
-    int size = layer.inputs*layer.batch;
-    for(j = 0; j < size; ++j) layer.rand[j] = rand_uniform();
-    cl_write_array(layer.rand_cl, layer.rand, layer.inputs*layer.batch);
-
-    cl_kernel kernel = get_dropout_kernel();
-    cl_command_queue queue = cl.queue;
-
-    cl_uint i = 0;
-    cl.error = clSetKernelArg(kernel, i++, sizeof(input), (void*) &input);
-    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.rand_cl), (void*) &layer.rand_cl);
-    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.probability), (void*) &layer.probability);
-    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.scale), (void*) &layer.scale);
-    check_error(cl);
-
-    const size_t global_size[] = {size};
-
-    cl.error = clEnqueueNDRangeKernel(queue, kernel, 1, 0, global_size, 0, 0, 0, 0);
-    check_error(cl);
-}
-
-void backward_dropout_layer_gpu(dropout_layer layer, cl_mem delta)
-{
-    int size = layer.inputs*layer.batch;
-
-    cl_kernel kernel = get_dropout_kernel();
-    cl_command_queue queue = cl.queue;
-
-    cl_uint i = 0;
-    cl.error = clSetKernelArg(kernel, i++, sizeof(delta), (void*) &delta);
-    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.rand_cl), (void*) &layer.rand_cl);
-    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.probability), (void*) &layer.probability);
-    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.scale), (void*) &layer.scale);
-    check_error(cl);
-
-    const size_t global_size[] = {size};
-
-    cl.error = clEnqueueNDRangeKernel(queue, kernel, 1, 0, global_size, 0, 0, 0, 0);
-    check_error(cl);
-}
-#endif

--
Gitblit v1.10.0