From 89354d0a0ce6fbb22ff262658045cdb8796ff6fd Mon Sep 17 00:00:00 2001
From: AlexeyAB <alexeyab84@gmail.com>
Date: Fri, 04 May 2018 20:52:05 +0000
Subject: [PATCH] Fixed memory leaks. And fixes for Web-camera and IP-camera.

---
 src/network.c |  408 +++++++++++++++++++++++++++++++++++++++++----------------
 1 files changed, 290 insertions(+), 118 deletions(-)

diff --git a/src/network.c b/src/network.c
index 2960d67..81b53f3 100644
--- a/src/network.c
+++ b/src/network.c
@@ -1,5 +1,6 @@
 #include <stdio.h>
 #include <time.h>
+#include <assert.h>
 #include "network.h"
 #include "image.h"
 #include "data.h"
@@ -14,17 +15,32 @@
 #include "local_layer.h"
 #include "convolutional_layer.h"
 #include "activation_layer.h"
-#include "deconvolutional_layer.h"
 #include "detection_layer.h"
+#include "region_layer.h"
 #include "normalization_layer.h"
 #include "batchnorm_layer.h"
 #include "maxpool_layer.h"
+#include "reorg_layer.h"
 #include "avgpool_layer.h"
 #include "cost_layer.h"
 #include "softmax_layer.h"
 #include "dropout_layer.h"
 #include "route_layer.h"
 #include "shortcut_layer.h"
+#include "yolo_layer.h"
+#include "parser.h"
+
+network *load_network(char *cfg, char *weights, int clear)
+{
+	printf(" Try to load cfg: %s, weights: %s, clear = %d \n", cfg, weights, clear);
+	network *net = calloc(1, sizeof(network));
+	*net = parse_network_cfg(cfg);
+	if (weights && weights[0] != 0) {
+		load_weights(net, weights);
+	}
+	if (clear) (*net->seen) = 0;
+	return net;
+}
 
 int get_current_batch(network net)
 {
@@ -39,15 +55,37 @@
     net.momentum = 0;
     net.decay = 0;
     #ifdef GPU
-        if(gpu_index >= 0) update_network_gpu(net);
+        //if(net.gpu_index >= 0) update_network_gpu(net);
     #endif
 }
 
+void reset_network_state(network *net, int b)
+{
+	int i;
+	for (i = 0; i < net->n; ++i) {
+#ifdef GPU
+		layer l = net->layers[i];
+		if (l.state_gpu) {
+			fill_ongpu(l.outputs, 0, l.state_gpu + l.outputs*b, 1);
+		}
+		if (l.h_gpu) {
+			fill_ongpu(l.outputs, 0, l.h_gpu + l.outputs*b, 1);
+		}
+#endif
+	}
+}
+
+void reset_rnn(network *net)
+{
+	reset_network_state(net, 0);
+}
+
 float get_current_rate(network net)
 {
     int batch_num = get_current_batch(net);
     int i;
     float rate;
+	if (batch_num < net.burn_in) return net.learning_rate * pow((float)batch_num / net.burn_in, net.power);
     switch (net.policy) {
         case CONSTANT:
             return net.learning_rate;
@@ -58,13 +96,15 @@
             for(i = 0; i < net.num_steps; ++i){
                 if(net.steps[i] > batch_num) return rate;
                 rate *= net.scales[i];
-                if(net.steps[i] > batch_num - 1) reset_momentum(net);
+                //if(net.steps[i] > batch_num - 1 && net.scales[i] > 1) reset_momentum(net);
             }
             return rate;
         case EXP:
             return net.learning_rate * pow(net.gamma, batch_num);
         case POLY:
-            return net.learning_rate * pow(1 - (float)batch_num / net.max_batches, net.power);
+			return net.learning_rate * pow(1 - (float)batch_num / net.max_batches, net.power);
+            //if (batch_num < net.burn_in) return net.learning_rate * pow((float)batch_num / net.burn_in, net.power);
+            //return net.learning_rate * pow(1 - (float)batch_num / net.max_batches, net.power);
         case RANDOM:
             return net.learning_rate * pow(rand_uniform(0,1), net.power);
         case SIG:
@@ -96,12 +136,16 @@
             return "crnn";
         case MAXPOOL:
             return "maxpool";
+        case REORG:
+            return "reorg";
         case AVGPOOL:
             return "avgpool";
         case SOFTMAX:
             return "softmax";
         case DETECTION:
             return "detection";
+        case REGION:
+            return "region";
         case DROPOUT:
             return "dropout";
         case CROP:
@@ -131,6 +175,11 @@
     #ifdef GPU
     net.input_gpu = calloc(1, sizeof(float *));
     net.truth_gpu = calloc(1, sizeof(float *));
+
+	net.input16_gpu = calloc(1, sizeof(float *));
+	net.output16_gpu = calloc(1, sizeof(float *));
+	net.max_input16_size = calloc(1, sizeof(size_t));
+	net.max_output16_size = calloc(1, sizeof(size_t));
     #endif
     return net;
 }
@@ -145,45 +194,7 @@
         if(l.delta){
             scal_cpu(l.outputs * l.batch, 0, l.delta, 1);
         }
-        if(l.type == CONVOLUTIONAL){
-            forward_convolutional_layer(l, state);
-        } else if(l.type == DECONVOLUTIONAL){
-            forward_deconvolutional_layer(l, state);
-        } else if(l.type == ACTIVE){
-            forward_activation_layer(l, state);
-        } else if(l.type == LOCAL){
-            forward_local_layer(l, state);
-        } else if(l.type == NORMALIZATION){
-            forward_normalization_layer(l, state);
-        } else if(l.type == BATCHNORM){
-            forward_batchnorm_layer(l, state);
-        } else if(l.type == DETECTION){
-            forward_detection_layer(l, state);
-        } else if(l.type == CONNECTED){
-            forward_connected_layer(l, state);
-        } else if(l.type == RNN){
-            forward_rnn_layer(l, state);
-        } else if(l.type == GRU){
-            forward_gru_layer(l, state);
-        } else if(l.type == CRNN){
-            forward_crnn_layer(l, state);
-        } else if(l.type == CROP){
-            forward_crop_layer(l, state);
-        } else if(l.type == COST){
-            forward_cost_layer(l, state);
-        } else if(l.type == SOFTMAX){
-            forward_softmax_layer(l, state);
-        } else if(l.type == MAXPOOL){
-            forward_maxpool_layer(l, state);
-        } else if(l.type == AVGPOOL){
-            forward_avgpool_layer(l, state);
-        } else if(l.type == DROPOUT){
-            forward_dropout_layer(l, state);
-        } else if(l.type == ROUTE){
-            forward_route_layer(l, net);
-        } else if(l.type == SHORTCUT){
-            forward_shortcut_layer(l, state);
-        }
+        l.forward(l, state);
         state.input = l.output;
     }
 }
@@ -195,29 +206,17 @@
     float rate = get_current_rate(net);
     for(i = 0; i < net.n; ++i){
         layer l = net.layers[i];
-        if(l.type == CONVOLUTIONAL){
-            update_convolutional_layer(l, update_batch, rate, net.momentum, net.decay);
-        } else if(l.type == DECONVOLUTIONAL){
-            update_deconvolutional_layer(l, rate, net.momentum, net.decay);
-        } else if(l.type == CONNECTED){
-            update_connected_layer(l, update_batch, rate, net.momentum, net.decay);
-        } else if(l.type == RNN){
-            update_rnn_layer(l, update_batch, rate, net.momentum, net.decay);
-        } else if(l.type == GRU){
-            update_gru_layer(l, update_batch, rate, net.momentum, net.decay);
-        } else if(l.type == CRNN){
-            update_crnn_layer(l, update_batch, rate, net.momentum, net.decay);
-        } else if(l.type == LOCAL){
-            update_local_layer(l, update_batch, rate, net.momentum, net.decay);
+        if(l.update){
+            l.update(l, update_batch, rate, net.momentum, net.decay);
         }
     }
 }
 
 float *get_network_output(network net)
 {
-    #ifdef GPU
-        return get_network_output_gpu(net);
-    #endif 
+#ifdef GPU
+    if (gpu_index >= 0) return get_network_output_gpu(net);
+#endif 
     int i;
     for(i = net.n-1; i > 0; --i) if(net.layers[i].type != COST) break;
     return net.layers[i].output;
@@ -229,11 +228,7 @@
     float sum = 0;
     int count = 0;
     for(i = 0; i < net.n; ++i){
-        if(net.layers[i].type == COST){
-            sum += net.layers[i].cost[0];
-            ++count;
-        }
-        if(net.layers[i].type == DETECTION){
+        if(net.layers[i].cost){
             sum += net.layers[i].cost[0];
             ++count;
         }
@@ -265,53 +260,18 @@
             state.delta = prev.delta;
         }
         layer l = net.layers[i];
-        if(l.type == CONVOLUTIONAL){
-            backward_convolutional_layer(l, state);
-        } else if(l.type == DECONVOLUTIONAL){
-            backward_deconvolutional_layer(l, state);
-        } else if(l.type == ACTIVE){
-            backward_activation_layer(l, state);
-        } else if(l.type == NORMALIZATION){
-            backward_normalization_layer(l, state);
-        } else if(l.type == BATCHNORM){
-            backward_batchnorm_layer(l, state);
-        } else if(l.type == MAXPOOL){
-            if(i != 0) backward_maxpool_layer(l, state);
-        } else if(l.type == AVGPOOL){
-            backward_avgpool_layer(l, state);
-        } else if(l.type == DROPOUT){
-            backward_dropout_layer(l, state);
-        } else if(l.type == DETECTION){
-            backward_detection_layer(l, state);
-        } else if(l.type == SOFTMAX){
-            if(i != 0) backward_softmax_layer(l, state);
-        } else if(l.type == CONNECTED){
-            backward_connected_layer(l, state);
-        } else if(l.type == RNN){
-            backward_rnn_layer(l, state);
-        } else if(l.type == GRU){
-            backward_gru_layer(l, state);
-        } else if(l.type == CRNN){
-            backward_crnn_layer(l, state);
-        } else if(l.type == LOCAL){
-            backward_local_layer(l, state);
-        } else if(l.type == COST){
-            backward_cost_layer(l, state);
-        } else if(l.type == ROUTE){
-            backward_route_layer(l, net);
-        } else if(l.type == SHORTCUT){
-            backward_shortcut_layer(l, state);
-        }
+        if (l.stopbackward) break;
+        l.backward(l, state);
     }
 }
 
 float train_network_datum(network net, float *x, float *y)
 {
-    *net.seen += net.batch;
 #ifdef GPU
     if(gpu_index >= 0) return train_network_datum_gpu(net, x, y);
 #endif
     network_state state;
+    *net.seen += net.batch;
     state.index = 0;
     state.net = net;
     state.input = x;
@@ -345,6 +305,7 @@
 
 float train_network(network net, data d)
 {
+    assert(d.X.rows % net.batch == 0);
     int batch = net.batch;
     int n = d.X.rows / batch;
     float *X = calloc(batch*d.X.cols, sizeof(float));
@@ -362,6 +323,7 @@
     return (float)sum/(n*batch);
 }
 
+
 float train_network_batch(network net, data d, int n)
 {
     int i,j;
@@ -392,27 +354,70 @@
     int i;
     for(i = 0; i < net->n; ++i){
         net->layers[i].batch = b;
+#ifdef CUDNN
+        if(net->layers[i].type == CONVOLUTIONAL){
+			cudnn_convolutional_setup(net->layers + i, cudnn_fastest);
+			/*
+			layer *l = net->layers + i;
+            cudnn_convolutional_setup(l, cudnn_fastest);
+			// check for excessive memory consumption 
+			size_t free_byte;
+			size_t total_byte;
+			check_error(cudaMemGetInfo(&free_byte, &total_byte));
+			if (l->workspace_size > free_byte || l->workspace_size >= total_byte / 2) {
+				printf(" used slow CUDNN algo without Workspace! \n");
+				cudnn_convolutional_setup(l, cudnn_smallest);
+				l->workspace_size = get_workspace_size(*l);
+			}
+			*/
+        }
+#endif
     }
 }
 
 int resize_network(network *net, int w, int h)
 {
+#ifdef GPU
+    cuda_set_device(net->gpu_index);
+    if(gpu_index >= 0){
+        cuda_free(net->workspace);
+		if (net->input_gpu) {
+			cuda_free(*net->input_gpu);
+			*net->input_gpu = 0;
+			cuda_free(*net->truth_gpu);
+			*net->truth_gpu = 0;
+		}
+    }
+#endif
     int i;
     //if(w == net->w && h == net->h) return 0;
     net->w = w;
     net->h = h;
     int inputs = 0;
     size_t workspace_size = 0;
-    //fprintf(stderr, "Resizing to %d x %d...", w, h);
+    //fprintf(stderr, "Resizing to %d x %d...\n", w, h);
     //fflush(stderr);
     for (i = 0; i < net->n; ++i){
         layer l = net->layers[i];
+		//printf(" %d: layer = %d,", i, l.type);
         if(l.type == CONVOLUTIONAL){
             resize_convolutional_layer(&l, w, h);
         }else if(l.type == CROP){
             resize_crop_layer(&l, w, h);
         }else if(l.type == MAXPOOL){
             resize_maxpool_layer(&l, w, h);
+        }else if(l.type == REGION){
+            resize_region_layer(&l, w, h);
+		}else if (l.type == YOLO) {
+			resize_yolo_layer(&l, w, h);
+        }else if(l.type == ROUTE){
+            resize_route_layer(&l, net);
+		}else if (l.type == SHORTCUT) {
+			resize_shortcut_layer(&l, w, h);
+		}else if (l.type == UPSAMPLE) {
+			resize_upsample_layer(&l, w, h);
+        }else if(l.type == REORG){
+            resize_reorg_layer(&l, w, h);
         }else if(l.type == AVGPOOL){
             resize_avgpool_layer(&l, w, h);
         }else if(l.type == NORMALIZATION){
@@ -420,6 +425,7 @@
         }else if(l.type == COST){
             resize_cost_layer(&l, inputs);
         }else{
+			fprintf(stderr, "Resizing type %d \n", (int)l.type);
             error("Cannot resize this type of layer");
         }
         if(l.workspace_size > workspace_size) workspace_size = l.workspace_size;
@@ -430,11 +436,17 @@
         if(l.type == AVGPOOL) break;
     }
 #ifdef GPU
-        cuda_free(net->workspace);
+    if(gpu_index >= 0){
+		printf(" try to allocate workspace = %zu * sizeof(float), ", (workspace_size - 1) / sizeof(float) + 1);
         net->workspace = cuda_make_array(0, (workspace_size-1)/sizeof(float)+1);
-#else
+		printf(" CUDA allocate done! \n");
+    }else {
         free(net->workspace);
         net->workspace = calloc(1, workspace_size);
+    }
+#else
+    free(net->workspace);
+    net->workspace = calloc(1, workspace_size);
 #endif
     //fprintf(stderr, " Done!\n");
     return 0;
@@ -526,6 +538,112 @@
     return out;
 }
 
+int num_detections(network *net, float thresh)
+{
+	int i;
+	int s = 0;
+	for (i = 0; i < net->n; ++i) {
+		layer l = net->layers[i];
+		if (l.type == YOLO) {
+			s += yolo_num_detections(l, thresh);
+		}
+		if (l.type == DETECTION || l.type == REGION) {
+			s += l.w*l.h*l.n;
+		}
+	}
+	return s;
+}
+
+detection *make_network_boxes(network *net, float thresh, int *num)
+{
+	layer l = net->layers[net->n - 1];
+	int i;
+	int nboxes = num_detections(net, thresh);
+	if (num) *num = nboxes;
+	detection *dets = calloc(nboxes, sizeof(detection));
+	for (i = 0; i < nboxes; ++i) {
+		dets[i].prob = calloc(l.classes, sizeof(float));
+		if (l.coords > 4) {
+			dets[i].mask = calloc(l.coords - 4, sizeof(float));
+		}
+	}
+	return dets;
+}
+
+
+void custom_get_region_detections(layer l, int w, int h, int net_w, int net_h, float thresh, int *map, float hier, int relative, detection *dets, int letter)
+{
+	box *boxes = calloc(l.w*l.h*l.n, sizeof(box));
+	float **probs = calloc(l.w*l.h*l.n, sizeof(float *));
+	int i, j;
+	for (j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(l.classes, sizeof(float *));
+	get_region_boxes(l, 1, 1, thresh, probs, boxes, 0, map);
+	for (j = 0; j < l.w*l.h*l.n; ++j) {
+		dets[j].classes = l.classes;
+		dets[j].bbox = boxes[j];
+		dets[j].objectness = 1;
+		for (i = 0; i < l.classes; ++i) {
+			dets[j].prob[i] = probs[j][i];
+		}
+	}
+
+	free(boxes);
+	free_ptrs((void **)probs, l.w*l.h*l.n);
+
+	//correct_region_boxes(dets, l.w*l.h*l.n, w, h, net_w, net_h, relative);
+	correct_yolo_boxes(dets, l.w*l.h*l.n, w, h, net_w, net_h, relative, letter);
+}
+
+void fill_network_boxes(network *net, int w, int h, float thresh, float hier, int *map, int relative, detection *dets, int letter)
+{
+	int j;
+	for (j = 0; j < net->n; ++j) {
+		layer l = net->layers[j];
+		if (l.type == YOLO) {
+			int count = get_yolo_detections(l, w, h, net->w, net->h, thresh, map, relative, dets, letter);
+			dets += count;
+		}
+		if (l.type == REGION) {
+			custom_get_region_detections(l, w, h, net->w, net->h, thresh, map, hier, relative, dets, letter);
+			//get_region_detections(l, w, h, net->w, net->h, thresh, map, hier, relative, dets);
+			dets += l.w*l.h*l.n;
+		}
+		if (l.type == DETECTION) {
+			get_detection_detections(l, w, h, thresh, dets);
+			dets += l.w*l.h*l.n;
+		}
+	}
+}
+
+detection *get_network_boxes(network *net, int w, int h, float thresh, float hier, int *map, int relative, int *num, int letter)
+{
+	detection *dets = make_network_boxes(net, thresh, num);
+	fill_network_boxes(net, w, h, thresh, hier, map, relative, dets, letter);
+	return dets;
+}
+
+void free_detections(detection *dets, int n)
+{
+	int i;
+	for (i = 0; i < n; ++i) {
+		free(dets[i].prob);
+		if (dets[i].mask) free(dets[i].mask);
+	}
+	free(dets);
+}
+
+float *network_predict_image(network *net, image im)
+{
+	image imr = letterbox_image(im, net->w, net->h);
+	set_batch_network(net, 1);
+	float *p = network_predict(*net, imr.data);
+	free_image(imr);
+	return p;
+}
+
+int network_width(network *net) { return net->w; }
+int network_height(network *net) { return net->h; }
+
 matrix network_predict_data_multi(network net, data test, int n)
 {
     int i,j,b,m;
@@ -634,7 +752,6 @@
     return acc;
 }
 
-
 float network_accuracy_multi(network net, data d, int n)
 {
     matrix guess = network_predict_data_multi(net, d, n);
@@ -645,15 +762,70 @@
 
 void free_network(network net)
 {
-    int i;
-    for(i = 0; i < net.n; ++i){
-        free_layer(net.layers[i]);
-    }
-    free(net.layers);
-    #ifdef GPU
-    if(*net.input_gpu) cuda_free(*net.input_gpu);
-    if(*net.truth_gpu) cuda_free(*net.truth_gpu);
-    if(net.input_gpu) free(net.input_gpu);
-    if(net.truth_gpu) free(net.truth_gpu);
-    #endif
+	int i;
+	for (i = 0; i < net.n; ++i) {
+		free_layer(net.layers[i]);
+	}
+	free(net.layers);
+
+	free(net.scales);
+	free(net.steps);
+	free(net.seen);
+
+#ifdef GPU
+	if (gpu_index >= 0) cuda_free(net.workspace);
+	else free(net.workspace);
+	if (*net.input_gpu) cuda_free(*net.input_gpu);
+	if (*net.truth_gpu) cuda_free(*net.truth_gpu);
+	if (net.input_gpu) free(net.input_gpu);
+	if (net.truth_gpu) free(net.truth_gpu);
+
+	if (*net.input16_gpu) cuda_free(*net.input16_gpu);
+	if (*net.output16_gpu) cuda_free(*net.output16_gpu);
+	if (net.input16_gpu) free(net.input16_gpu);
+	if (net.output16_gpu) free(net.output16_gpu);
+	if (net.max_input16_size) free(net.max_input16_size);
+	if (net.max_output16_size) free(net.max_output16_size);
+#else
+	free(net.workspace);
+#endif
+}
+
+
+void fuse_conv_batchnorm(network net)
+{
+	int j;
+	for (j = 0; j < net.n; ++j) {
+		layer *l = &net.layers[j];
+
+		if (l->type == CONVOLUTIONAL) {
+			//printf(" Merges Convolutional-%d and batch_norm \n", j);
+
+			if (l->batch_normalize) {
+				int f;
+				for (f = 0; f < l->n; ++f)
+				{
+					l->biases[f] = l->biases[f] - (double)l->scales[f] * l->rolling_mean[f] / (sqrt((double)l->rolling_variance[f]) + .000001f);
+
+					const size_t filter_size = l->size*l->size*l->c;
+					int i;
+					for (i = 0; i < filter_size; ++i) {
+						int w_index = f*filter_size + i;
+
+						l->weights[w_index] = (double)l->weights[w_index] * l->scales[f] / (sqrt((double)l->rolling_variance[f]) + .000001f);
+					}
+				}
+
+				l->batch_normalize = 0;
+#ifdef GPU
+				if (gpu_index >= 0) {
+					push_convolutional_layer(*l);
+				}
+#endif
+			}
+		}
+		else {
+			//printf(" Fusion skip layer type: %d \n", l->type);
+		}
+	}
 }

--
Gitblit v1.10.0